
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning Laravel's Eloquent

Develop amazing data-based applications with
Eloquent, the Laravel framework ORM

Francesco Malatesta

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Laravel's Eloquent

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1210715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-158-4

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Francesco Malatesta

Reviewers
Jeff Madsen

Ângelo Marcos Rigo

Commissioning Editor
Ashwin Nair

Acquisition Editors
Nikhil Karkal

Rebecca Youe

Content Development Editor
Ritika Singh

Technical Editors
Edwin Moses

Tejaswita Karvir

Copy Editor
Dipti Mankame

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Francesco Malatesta, born in 1990, is a web developer and a curious enthusiast
from Vasto, a wonderful city on the Italian eastern coast. He actually lives in Rome,
where he is studying computer engineering. He received his first PC at the age of six,
and since then, they have never separated. It's not all about computers, however; he
also likes to travel, add new items to his movie collection, and create new awesome
experiences. This book is a perfect example.

"Never stop" is his key.

He is the founder of Laravel-Italia, the Italian Laravel community. He works as a
freelancer developer and consultant, but he also writes for Sitepoint, in the PHP
section, and HTML.IT, the first portal about information technology in Italy.
He started his first job in web development when he was 15 years old.

In the past, he has translated three books, which are Laravel: Code Happy
(by Dayle Rees), Code Bright (by Dayle Rees), and Laravel Testing: Decoded
(by Jeffrey Way).

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

There are many people that I would like to thank. Without them, what you are
actually reading would not have been possible.

First of all, I would like to thank my parents, Paolo and Cinzia. Their efforts,
teachings, and support are absolutely precious and invaluable.

Also, I would like to thank the awesome Rebecca Youe and the adorable Ritika Singh.
They followed me over the entire process with much advice and feedback. I never felt
alone and learned many things about writing. If you end up reading something cool,
you have to know that these two fantastic ladies have given a fantastic contribution.

Finally, last but not least, I would like to thank a really important person. Words can
make a good book, sometimes a perfect one. However, in some cases, they are not
enough. Someday, maybe, I will find the right ones.

Until then… thank you, Lavinia. This book, my first one, is dedicated to you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jeff Madsen has been programming for over 15 years as both a database
programmer and web application developer. He is especially active in the Laravel
and Codeigniter communities. You can read some of his tutorials on a variety of
topics at http://codebyjeff.com or reach him on Twitter at @codebyjeff.

Ângelo Marcos Rigo has a strong background in web development, focusing on
content management systems. In the last 7 years, he has also worked on managing,
customizing, and developing extensions for Moodle LMS. He can be reached on his
website http://www.u4w.com.br for consulting.

He has previously worked on a Moodle Security book.

I would like to thank my wife, Janaina de Souza, and my daugther,
Lorena Rigo, for their support while I was away reviewing this book.

www.allitebooks.com

http://codebyjeff.com
http://www.u4w.com.br
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.
com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com, and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Setting Up Our First Project 1

Your Swiss Army Knife – Composer 2
Installing Composer 2
The composer.json and autoload files 3
The most used commands 4

Your safe place – Homestead 6
Installing Homestead 8

The Composer and PHP tool way 8
The Git way 9

Configuring Homestead 9
The new hideout – Homestead improved 13
A bonus tool – Adminer 14
Your best friend – Laravel 14

Installing Laravel 15
Using the Laravel installer tool 15
Using the Composer create-project command 16

The first project – EloquentJourney 16
The configuration system 17
Setting up the database connection 19

Summary 21
Chapter 2: Building the Database with the Schema Builder Class 23

The Schema Builder class 24
Working with tables 24
Working with columns 26
Columns' methods reference 28
Other $table object methods 29
Updating tables and columns 31
Indexes and foreign keys 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Database versioning with the migrations system 35
Creating migrations 35
Rolling back migrations 37
More examples, more migrations 38

Summary 41
Chapter 3: The Most Important Element – the Model! 43

Creating a Model 44
Create, read, update, and delete operations basics 46

Creating operations 46
Reading operations 48
Updating operations 52
Deleting operations 52

where, aggregates, and other utilities 53
where and orWhere 54

Magic wheres 56
Aggregates 57
Utility methods 58

Mass assignment... for the masses 59
Timestamps and soft deletes 62

Timestamps 62
Soft deleting 64

Query scopes 66
Attributes casting, accessors, and mutators 68

Attributes casting 69
Accessors and mutators 70

Descending in the code 72
A big file 72
Quick conversion to array or JSON 73
Imaginary attributes 75
Route model binding 76
Records chunking for memory optimization 77

Summary 78
Chapter 4: Exploring the World of Relationships 79

The trinity – one to one, one to many, many to many 81
One to one 81

What exactly happened? 84
One to many 85
Many to many 87
A question of inverses 90

Table of Contents

[iii]

Querying-related models 90
Accessing a pivot table 93
Querying a relationship 93

Eager loading (and the N + 1 problem) 94
Basic eager loading 95
Advanced eager loading 96
Lazy eager loading 97

Inserting and updating related models 98
The save() and associate() methods 98
What about many to many? 100
The sync() method 102

Accessing distant relationships 103
More power – polymorphic relationships 106

A simple polymorphic relationship 106
A many-to-many polymorphic relationship 111

Summary 113
Chapter 5: Using Collections to Enhance Results 115

Basic collection operations 116
Transforming collections 119
Iterating and filtering 122

Iterating 122
Filtering 122

Sorting 123
Summary 123

Chapter 6: Everything under Control with Events and Observers 125
When should I use events in my models? 126
Model events 127
An example of model events 129
Events observers 130
An example of model observers 131
Summary 137

Chapter 7: Eloquent… without Laravel! 139
Exploring the directory structure 140
Installing and configuring the database package 141

Installing the package 142
Configuring the package 142

Using the ORM 143

Table of Contents

[iv]

Using the Query and Schema Builder 144
The Query Builder 145
The Schema Builder 145

Summary 146
Chapter 8: It's Not Enough! Extending Eloquent,
Advanced Concepts 147

Extending the Model: Aweloquent! 148
The Aweloquent Model 151

Auto Hydrate 152
Model self-validation 152
Smart password hashing 153
The autopurge of confirmation fields 154

Extending the class 154
The Auto Hydrate feature 154
The Aweloquent Model self-validation feature – the basic version 157
The Aweloquent Model self-validation feature –
the operation-based version 159
Smart password hashing and the confirmation fields autopurge method 162
Fixing the save() Model method 163

Diving into the repository pattern 166
Hello, repository pattern! 167
Introducing repositories – a concrete implementation 169
Coding on Abstractions 172
Repositories – a complete implementation 173

Adding the new repository 176
Summary 178

Index 179

[v]

Preface
If you are associated with the field of web development, you know how important
data is. The web runs on data, so it's essential for developers to think of quick and
effective ways to deal with it. Eloquent is an awesome ORM that comes with the
Laravel PHP framework. It is unique and is very beneficial to developers as it allows
them to define models, relationships, and many complex operations with a really
easy and intuitive syntax, without sacrificing performance. Performing an interesting
number of operations on multiple tables without writing long queries with objects
will be a bed of roses.

This book will take you through developing brilliant data-based applications with
Eloquent, the Laravel framework ORM.

You will do the following:

• Build highly efficient applications with the Eloquent ORM using an
expressive syntax

• Get to grips with the power of relationships and how Eloquent handles them
• Go beyond simple theory with various step-by-step code examples

So, let's get started!

What this book covers
Chapter 1, Setting Up Our First Project, will discuss how to deal with Composer
and Homestead. We will also cover the installation process of our very first
Laravel project.

Chapter 2, Building the Database with the Schema Builder Class, will discuss the Schema
Builder Class. We will analyze everything you can do with the class, look at different
types of indexing, and learn about the methods that the Schema class provides.

Preface

[vi]

Chapter 3, The Most Important Element – the Model!, will help us implement some
"create," "read," "update," and "delete" logic for our items. We will also explore
some useful methods and features of the model class.

Chapter 4, Exploring the World of Relationships, will help us discover how to work with
different types of relationships and how to query and use them in a comfortable
and clean way. Also, we will learn how to insert and delete related models in our
database, or update existing ones.

Chapter 5, Using Collections to Enhance Results, will talk about collections. We will
work with some results transformation methods and with the elements that make
up a collection.

Chapter 6, Everything under Control with Events and Observers, will allow us to learn
everything about the events in the context of Eloquent models. Right after, we will
cover model events and model observers.

Chapter 7, Eloquent… without Laravel!, will explore the structure of the database
package and see what is inside it. After that, we will learn how to install the
"illuminate/database" package separately for your project and how to configure it
for its first use. Yes, exactly: Eloquent without Laravel!

Chapter 8, It's Not Enough! Extending Eloquent, Advanced Concepts, will explore
two different ways to extend Eloquent, and move on to learn about the
Repository pattern.

What you need for this book
This book has no specific requests about hardware or software; we will use Vagrant
to set up a standard virtual machine as a foundation for the example projects and
code snippets. So, don't worry, my friend! No long afternoons or nights will be
passed on the Apache or Nginx configuration files.

Who this book is for
This book is perfect for developers with a basic knowledge of PHP development, but
who are new to the Eloquent ORM. However, developers with previous Laravel and
Eloquent experience will also benefit from the in-depth analysis of specific classes
and methodologies in the book.

Preface

[vii]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the EventServiceProvider class, you can add a special event listener and bind it
to a certain closure."

A block of code is set as follows:

 User::saved(function($user)
 {
 // doing something here, after User save operation
 (both create and update)...
 });

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "All you
have to do is to go on the Download page of the Composer website and find the
right method for your operating system."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

[1]

Setting Up Our First Project
"Chi ben comincia è a metà dell'opera."

(Italian for "Well begun is half done.")

Every journey has a beginning, and only a hero with the right equipment can attain a
victory. Of course, there are no exceptions for the 21st century hero: the developer!

In order to avoid problems and fight the bad (and malfunctioning) code monster,
the good code artisan will prepare everything necessary before the start.

A developer has to be comfortable with the tools they are going to use, and a
good development environment can awesomely improve the process. So, before
getting our hands dirty, in this chapter, we will discover how to deal with
Composer and Homestead.

Composer is an awesome dependency management tool, which is used by many
PHP projects around the world. Homestead is the official Laravel Vagrant box that
lets you create a fully functional development environment on a dedicated virtual
machine in a matter of minutes. Finally, we will cover the installation process of our
very first Laravel project.

I know what you are thinking: you just want to write code, code, and more code.

Be patient for a little while: if you know the tools we are going to analyze, at the
end of this chapter, you will feel an enormous difference.

Setting Up Our First Project

[2]

Trust me.

• Your Swiss Army Knife: Composer
• Your safe place: Homestead
• The new hideout: Homestead improved
• A bonus tool: Adminer
• Your best friend: Laravel
• Your first project: EloquentJourney
• Summary

Your Swiss Army Knife – Composer
The very first thing you will need to work with Laravel (and then Eloquent) is
Composer. Composer is a dependency management tool for PHP. With this tool,
you can easily include every dependency that is needed in your project. This is
done in seconds, using a JSON configuration file named composer.json.

Usually, dependencies in a PHP project were managed with PEAR or other methods.
Composer has a different policy: everything works on a per-project basis. This means
that you can have two projects on the same server with different versions of the same
dependency package.

Installing Composer
The installation procedure is ridiculously easy. All you have to do, is to go on
the Download page of the Composer website and find the right method for your
operating system.

• If you have Linux or Mac, just use this:
curl -sS https://getcomposer.org/installer | php

Or, if you don't have cURL, then use this:
php -r "readfile('https://getcomposer.org/installer');" | php

Also, the composer.phar file will be downloaded in your current directory.

• On Windows, you can simply download the dedicated installer.

Chapter 1

[3]

Once Composer is installed, I suggest putting its path in the PATH variable of your
system, in order to use it wherever you want. There are many ways to do it, which
depend on your operating system. Let's look at each.

• On Linux, you can move Composer to the right directory simply with the
following command:
mv composer.phar /usr/local/bin/composer

• The same goes for OS X, but sometimes, the usr directory doesn't exist.
You must create usr/local/bin manually.

• Finally, on Windows, you must open the control panel and type
environment variable or something similar. The search utility will do the
rest for you. Once in the right window, you will get a list of all environment
variables. Find PATH and add the composer installation path to it.

The composer.json and autoload files
Before we go deep into our project, let's take a look at how Composer works.

In the composer.json file, the developer specifies every single dependency for its
project. You can also create your packages, but we are not going to look at how to
create them in this book.

So, let's say that you want to create a project that uses Monolog for logging purposes.

1. Create a folder for the project, then create an empty text file, and name it
composer.json.

2. Open it and all you will have to do is to include your dependency as shown:
 {
 "require": {
 "monolog/monolog": "1.12.0"
 }
 }

3. After that, save the file and type the following in your project directory:

composer update

Wait a minute to download everything, and then you are done!

What? OK, here is how it works: Composer downloads every package you may
need and automatically creates a loader for all your packages. So, to use your
dependencies in your project, you will just need to include vendor/autoload.php,
and you are good to go.

www.allitebooks.com

http://www.allitebooks.org

Setting Up Our First Project

[4]

Let's say that you have an index.php file as a start file for your application. You will
have to perform something like the following:

 <?php // index.php file

 require('vendor/autoload.php');

 // your code here...

Nothing more!

Why am I showing this to you? Well, Laravel and Eloquent are Composer packages.
So, in order to use it and create a Laravel application, you have to know how the
mechanism works!

The most used commands
Composer is a command-line tool. Every good CLI tool has some important
commands, and in this little section, I will show you what we are going to
use the most.

• First of all, we have the following:
composer create-project

With this command, you can create a new project using a specific package
as a base. You will use this command to create a new Laravel project using
the following syntax:

composer create-project laravel/laravel my_project_folder

• Then, you can find:
composer install

composer update

These are two similar commands; they are similar, but not the same.
When you specify your dependencies in the composer.json file, you
can use install to install them. If you already installed them but you
want to update your dependencies to a newer version, use update.

Chapter 1

[5]

In order to know what must and must not be updated, Composer
uses the composer.lock file, which you can see in the root of
your project. Actually, you will never have to work with it, but it's
important to know that Composer uses it as a log of what it does.

• Sometimes, you will also see this:
composer require

You can use require to include dependencies in your project on the fly.
Here's an example of Monolog inclusion using require:

composer.phar require monolog/monolog:1.12.0

• Another often used command is:
composer dump-autoload

This command regenerates the autoload.php file. It can be useful if you
add some classes into your projects without using namespaces or PSR
conventions and rules.

• Sometimes, you will have to use (after a warning):
composer self-update

This command updates Composer itself. Just a few seconds, and you are up
and running again!

• Finally, you can use the following special command:

composer global COMMAND_HERE

Use it to execute a specific command in the Composer home directory. As
I mentioned before, Composer works on a per-project basis, but sometimes
you will need to install some tools globally. With the global command, you
can do it easily.

That's all you need to know about Composer right now, and yes, there are many
other commands, but we don't need them now.

Let's take a step forward: it's time to learn about Homestead!

Setting Up Our First Project

[6]

Your safe place – Homestead
When we start a new project, we might also stumble upon many compatibility and
environment issues. The first one to think about is the PHP version. Maybe you are
using XAMPP or some preconfigured stack on your local machine. For your new
project, you want to use PHP 5.6, but the installed version is 5.3 (as you used it for
some older projects). Fine, no problem; you can just install 5.6, and you are good to go.

Yes, but after two days, the phone rings. It's your old customer; finally, it's time to
make some improvements and add new features! So, you start your stack services,
browse your old project index, and BOOM! Compatibility issues, compatibility issues
everywhere! Not exactly the best way to start your day.

This is not a code problem, but an environment problem.

Actually, the best solution is to start using Vagrant. Vagrant is a fantastic tool
that lets you create a virtual machine with a headless operating system in order
to configure the virtual machine on a per-project basis. Also, you can share some
folders from your local machine with that machine, so you can work on an isolated
environment while working with your favorite IDE and operating system.

Note that the per-project basis is the most important part of the
entire thing. If you configure a separate machine for a single
project, you can tweak everything you want to reach the perfect
environment. Also, with Vagrant, you will be able to set your
local environment in the same way your production machine is
configured. So, no more local to production bugs and issues!

Last but not least, the fun (and useful) thing about Vagrant is that you can put a
specific box under version control. So, for every new team member, all you have to
do is to clone the repository and start the machine.

This looks complicated, but it is not. With Vagrant you can easily download a box
(a ready-to-use virtual machine with all the tools and applications you need) and
start it with a simple command from the shell as shown:

$ vagrant up

Chapter 1

[7]

The Laravel community knows a couple of things about Vagrant and makes up a
Vagrant Box to help you in your job.

Homestead is the official Vagrant Box for Laravel and already has everything you
need to get started. You will find it (already installed and working), by default:

Ubuntu 14.04 Node (with Bower, Grunt, and Gulp)
PHP 5.6 Redis
HHVM Memcached
nginx Beanstalkd
MySQL Laravel Envoy
PostgreSQL Fabric + Hipchat Extension

Not too bad for a tool box that you can prepare in a matter of minutes!

Now let's stop discussing and install Homestead.

Setting Up Our First Project

[8]

Installing Homestead
First of all, ensure that you have already installed VirtualBox (https://www.
virtualbox.org/) and Vagrant (https://www.vagrantup.com/). You can install
them on every operating system, so feel free to use whichever you want.

If you want to work with a good shell on Windows, I suggest
you use Cmder (http://bliker.github.io/cmder/).
While writing this book, I referred to the same link.

Next, we can add Homestead to our local boxes. This means that Vagrant will
download the Homestead box in order to be used locally.

You can do it with a simple command:

vagrant box add laravel/homestead

You will have to wait a couple of minutes to download the box. So, if you want to
have a coffee, this is the perfect moment.

Here, you don't have to worry about where Vagrant is placing the box,
as it is going to save it locally in the Vagrant folder. In the future, every
time you will need a specific box, Vagrant will clone and use it.

Alright, your box is now on your local machine and ready to be started.
However, accordingly to your local machine settings, you can install Homestead
in two different ways. They are both present in the official Laravel documentation,
so they are both official.

The Composer and PHP tool way
Let's start with the first one: it is a perfect choice if you already have Composer
and PHP on your local machine. Note that you are only going to do these steps the
first time.

Use this command to install the Homestead CLI tool.

composer global require "laravel/homestead=~2.0"

Then, be sure to put the ~/.composer/vendor/bin directory in the PATH
environment variable, in order to use the tool wherever you want.

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.vagrantup.com/
http://bliker.github.io/cmder/

Chapter 1

[9]

After that, you can initialize your machine. Use the init command:

homestead init

This will create a ~/.homestead folder with a Homestead.yaml inside of it. This file
will be used by Vagrant at the virtual machine start.

The Git way
If you don't have PHP and Composer installed on your local machine (or maybe you
just don't want to use them), no problem. You can simply use Git.

Choose a folder where you want to save your virtual machine. Then, clone the
repository with:

git clone https://github.com/laravel/homestead.git HomesteadFolder

Here, HomesteadFolder is the place you chose for your VM files. After the
clone process, use cd to get into the folder and start the init script using the
following command:

bash init.sh

This script will create a Homestead.yaml file in a ~/.homestead directory,
and that's it!

The following steps for installation are the same for both the methods you just saw.

Configuring Homestead
Before we go forward, let's take a look at the default Homestead.yaml file.

 ip: "192.168.10.10"
 memory: 2048
 cpus: 1

Setting Up Our First Project

[10]

 authorize: ~/.ssh/id_rsa.pub

 keys:
 - ~/.ssh/id_rsa

 folders:
 - map: ~/Code
 to: /home/vagrant/Code

 sites:
 - map: homestead.app
 to: /home/vagrant/Code/Laravel/public

 databases:
 - homestead

 variables:
 - key: APP_ENV
 value: local

If you are unfamiliar with this syntax, no problem; it's a simple YAML (YAML ain't
a markup language) markup file. It is a very readable way to specify settings, and
Homestead uses it. Here, you can choose the IP address for your virtual machine and
other settings. Tweak the configuration file accordingly to your needs.

1. Do you see the authorize property in the Homestead.yaml file? Well, we
are going to set up our SSH key and put its path there. If it scares you, don't
worry; it is just a command.
ssh-keygen -t rsa -C "you@homestead"

If you are using Windows, the Laravel documentation recommends
Git Bash. Personally, as I mentioned before, I prefer to use Cmder.
However, you can also use PuTTY or whatever you want. Use ssh-keygen
–t rsa –C "you@homestead" to generate your ssh key. This is shown in the
following screenshot:

Chapter 1

[11]

2. Put the generated SSH key path in the authorize property of Homestead.
yaml, as shown in the following:
authorize: ~/.ssh/id_rsa.pub

Done? Good. Now, you can see a folders property as well.

As I mentioned before, Vagrant lets the developer share some folders
between the local and virtual machines.
What is the point of that? Well, it is really important because with
this system we can work on our project on a separate machine,
while being able to use whatever IDE or tool we want from our local
machine. For example, even if the VM has Ubuntu, I can easily use
Windows 8.1 and PHPStorm. The best of both worlds!

3. By default, Homestead suggests this structure:
folders:
 - map: ~/Code
 to: /home/vagrant/Code

Also, this means that you will have to create a Code folder in your user
folder. This local folder will be mapped to a /home/vagrant/Code folder
on the VM; every change that you make there will be reflected on the virtual
machine and vice versa.

You can customize this mapping to your needs.

4. Next, let's take a look at the sites property. Here's what you can see in a
default setup:
 sites:
 - map: homestead.app
 to: /home/vagrant/Code/Laravel/public

You can define a custom domain for every project, which is a really
comfortable way to work with your projects, as you will no longer need to
test your project with an IP (like 192.168.10.10), only a simple local domain,
such as myproject.dev.

Setting Up Our First Project

[12]

5. This is a good point to define a separate site for our project. So, feel free to
add these lines to your file:
 - map: eloquent.dev
 to: /home/vagrant/Code/EloquentJourney/public

6. Next, go to your host's file (on the host machine) and add this record:
 192.168.10.10 eloquent.dev

You can see how you need to add it in the following screenshot:

Of course, you have to insert the same IP you specified in the
Homestead.yaml file.

7. The last thing we are going to see here is the database property. For every
name you add here, Homestead will automatically create a database to work
with. So, edit the property to something like this:
 databases:
 - homestead
 - eloquent_journey

This is because we are going to use a separate eloquent_journey MySQL database
for our test application.

Chapter 1

[13]

The default username for the MySQL server is homestead,
and the default password is secret.

We have nothing more to do here; our setup is complete, and now we are ready to
boot up our virtual machine and use it.

The new hideout: Homestead improved
Even if Homestead is a fantastic box, many people complain about some of its
structural choices. As I mentioned previously, Vagrant is used to create virtual
machines on a per-project basis. This means that, in an ideal situation, every project
must have its own VM. Now, with Homestead, you can create a single VM and
manage all your projects on it. Some people like this idea, and it is more familiar to
the classical XAMPP approach. Quite familiar!

However, other people like a more pure approach to Vagrant. While doing
some researches on this concept, I stumbled upon Homestead Improved
(https://github.com/Swader/homestead_improved) by Swader, on GitHub.

It is an improved version of Homestead that you can install and run without saving
files all around your user folder. A really good approach! Also, you won't have to
configure any SSH keys or execute apt-get update and composer auto-update.
Everything will be done automatically.

If you want to use Homestead Improved, just open your terminal and type the
following:

git clone https://github.com/Swader/homestead_improved.git
MyHomesteadImprovedVM

Here, MyHomesteadImprovedVM will be the containing folder of all the VM's files.

After the clone procedure, just type the following:

vagrant up

So, you're done! Easier than before, isn't it?

www.allitebooks.com

https://github.com/Swader/homestead_improved
http://www.allitebooks.org

Setting Up Our First Project

[14]

A bonus tool – Adminer
Before going deeper along our journey, there is another really useful tool that I want
to show you. I am talking about Adminer, a Database Management tool entirely
contained in a single .php file. You can download it at http://www.adminer.org/.

Maybe you will find the Adminer interface very similar to the phpMyAdmin
interface. It's true, but Adminer has more features. Just to make a simple example,
phpMyAdmin only supports MySQL. Instead, Adminer supports MySQL,
PostgreSQL, SQLite, Oracle, and MS SQL.

Obviously, you can use whatever you want to deal with your database. However,
I wanted to show you Adminer because it is what I am going to use to show, from
time to time, some query results or various examples. So, it would be good if you get
more familiar with this tool.

Your best friend: Laravel
We are close to the end. You have a weapon (Composer) and a safe place to do
everything you want without worrying about issues (Homestead). What about an
ally? Laravel could be a good one, don't you think? Also, Laravel is the Eloquent
container: we are going to create a new project with it to fully embrace its power.

http://www.adminer.org/

Chapter 1

[15]

Installing Laravel
Before going further, remember that Laravel has some prerequisites. You will need
the following:

• PHP 5.4 (or more recent versions)
• The PHP Mcrypt extension
• The PHP OpenSSL extension
• The PHP Mbstring extension

If you are using PHP 5.5, you may need to install the JSON PHP
extension. If this is the case, just type this:
apt-get install php5-json

So, you are good to go.

Obviously, if you have installed Homestead, everything is already in its right place.

1. All you have to do is to boot up the VM with the following command:
homestead up

2. And when the bootstrap procedure is done, use the following command to
get in the machine via SSH:

homestead ssh

Having said that, as you may have experienced from Homestead, Laravel also gives
you two different ways to install it and create a new project.

• The first one is done using a specific tool, the Laravel installer tool. It's a CLI
tool that you can install as a global Composer package.

• The second one is a simple composer create-project command.
Of course, we will now see both ways.

Using the Laravel installer tool
The Laravel installer tool is a nice utility that lets you create a new Laravel project
with a very simple syntax. Imagine that you want to create a new project in a folder
called my_project. All you have to do, if you have the tool installed, is to type this
and nothing more:

laravel new my_project

Setting Up Our First Project

[16]

Installing the tool is easy. Just open the terminal and type the following:

composer global require "laravel/installer=~1.1"

As you saw before, we are executing the require command with the global
keyword. This means that the installer tool package will be saved in the Composer's
global folder and the tool will be available everywhere.

If you have any problems running the tool, just be sure to put
~/.composer/vendor/bin in the PATH environment variable.
Otherwise, it won't work!

Using the Composer create-project command
If you don't want to install the Laravel installer tool, you can simply use the
create-project command of Composer.

All you have to do, in this case, is use this command:

composer create-project laravel/laravel ProjectName

Here, ProjectName stands for the folder name that you want to use as the root of
your new Laravel project.

Nothing more to do here! Your Laravel project is now fully installed in your
specified folder.

Be sure to configure the right permissions on your folders and
ensure you take a good look at the URL rewriting rules. If you take
a look at the Laravel-dedicated documentation page (http://
laravel.com/docs/5.0/installation#pretty-urls), you
can learn how to do it on Apache or nginx.

The first project – EloquentJourney
A new project will be the perfect metaphor for our new, fantastic journey! While
studying Eloquent, we will build a simple project. More specifically, we will analyze
a hypothetical library management system's data-related part and its components.

http://laravel.com/docs/5.0/installation#pretty-urls
http://laravel.com/docs/5.0/installation#pretty-urls

Chapter 1

[17]

What are you waiting for? Let's start! First of all, create a new project (using your
favorite method). We will call our new project EloquentJourney. Type the following
in your server folder:

laravel new EloquentJourney

Otherwise, type the following if you prefer:

composer create-project laravel/laravel EloquentJourney

Wait a few seconds to build the project, and after the installation procedure, you are
done! You can use cd to get into your new folder and see what's there.

Cool! All right, but what are we going to do now? There are thousands of files here
and in other subfolders! Don't worry. Take a breath and follow me. First of all, we
need to do some practice with the Laravel configuration system in order to set up an
appropriate database connection.

Without it, we could not use Eloquent!

The configuration system
Everything you could need on configuration is stored in the config directory. Every
file here has quite a descriptive name: app.php, database.php, filesystems.php,
cache.php, and so on. Actually, we are going to use two of these files: app.php, for
some basic settings, and database.php, for obvious reasons.

First of all, let's open the app.php file and see what you can find inside.

<?php

return [

 'debug' => true,

 'url' => 'http://localhost',

 'timezone' => 'Europe/Rome',

 'locale' => 'en',

 'fallback_locale' => 'en',

Setting Up Our First Project

[18]

 'key' => env('APP_KEY', 'SomeRandomString'),

 'cipher' => MCRYPT_RIJNDAEL_128,

 'log' => 'daily',

 // other items here...

];

A Laravel config file contains a return instruction. The returned value is an
associative array. As you can easily imagine, the key-value system represents the
configuration item name and its value. For example, let's examine the first item:

 'debug' => true,

This means that the app.debug configuration item is set on the Boolean value true.

Laravel uses these values all around the framework code, and you can use them too
with the \Config class.

Specifically, if you want to retrieve a specific item value, you have to call the get()
method, as follows:

 $myItem = \Config::get('item.name');
 var_dump($myItem);

 // true

You can also set a specific Config value at runtime, this time using the set()
method, as follows:

 \Config::set('item.name', 'my value!');

 $myItem = \Config::get('item.name');
 var_dump($myItem);

 // "my value!"

Chapter 1

[19]

Setting up the database connection
Yes, we finally arrived at the end of this chapter. The last thing we need to do here,
is to set up the database connection.

Let's open the database.php file under config. You should see something like this:

<?php

return [

 'fetch' => PDO::FETCH_CLASS,

 'default' => 'mysql',

 'connections' => [

 'sqlite' => [
 'driver' => 'sqlite',
 'database' => storage_path().'/database.sqlite',
 'prefix' => '',
],

 'mysql' => [
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'homestead',
 'username' => 'homestead',
 'password' => 'secret',
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
 'strict' => false,
],

 'pgsql' => [
 'driver' => 'pgsql',
 'host' => env('DB_HOST', 'localhost'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'charset' => 'utf8',

Setting Up Our First Project

[20]

 'prefix' => '',
 'schema' => 'public',
],

 'sqlsrv' => [
 'driver' => 'sqlsrv',
 'host' => env('DB_HOST', 'localhost'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'prefix' => '',
],

],

 'migrations' => 'migrations',

 'redis' => [

 'cluster' => false,

 'default' => [
 'host' => '127.0.0.1',
 'port' => 6379,
 'database' => 0,
],

],

];

The two most important items are default and connections. In this second item,
connections, we are storing all the information we need to connect to our databases.
By default, you will find many examples. In fact, here you can see the sqlite, then
mysql, and also sqlsrv connections.

Every connection has a driver. The driver element indicates the used database
for that connection. If you want, you can specify more than one connection, when
necessary. The default element represents the chosen connection.

Chapter 1

[21]

Let's delete everything and replace the default and connections elements with
the following:

 'default' => 'eloquentJourney',

 'connections' => [

 'eloquentJourney' => [
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'eloquent_journey',
 'username' => 'homestead',
 'password' => 'secret',
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
 'strict' => false,
],
],

What did we just do?

Quite simple! We have defined an eloquentJourney connection. This connection
will use the mysql driver. So, we are going to connect Laravel to a MySQL server.
I am not going to explain the other properties, as it is really easy to understand
their meanings.

After that, we specified the connection name as the default option. This means that,
for every future call to a database-related operation, Laravel will connect to the
server specified in the eloquentJourney connection with the given credentials.

Summary
We did it!

We prepared everything that is needed to work with Laravel and Eloquent. We set
up a local development server, learned the basics of Composer to correctly manage
our dependencies, installed a couple of more useful tools, and, finally, successfully
configured our database connection. Not bad for the first chapter, huh?

However, we have just begun, and our journey inside Eloquent is at the very
beginning. We are ready to leave our safe house, go into the darkest corner of the
Eloquent ORM to explore it, and understand all of its secrets.

It will be a great ride. And now, let's explore our first topic on our way: the Schema
Builder and the migrations system, to build the perfect database!

[23]

Building the Database with
the Schema Builder Class

Hey hero!

Our development environment is now ready. No more worries, and a whole new
world awaits: the hero left his home. Little by little, step by step, he is going forward
toward the goal. The hero knows what is really important: to stay grounded. Having
a good foundation helps. No big differences for an application: a well-designed
database for your project is always the best start.

Starting from this important assumption, the question naturally arises: is there a
way, with Laravel, to deal with the design of a database before using it, maybe in a
smart way that you can easily manage? The answer is, as you can imagine, yes.

In this chapter, we will look at the Schema Builder class. A very important class
that lets you design your entire database without writing a single SQL line! Quite
impressive if you think about it, considering that it is quite possible that you will
build your entire application on a SQL database without using SQL! We will analyze
everything you can do with the class: creating, dropping, and updating a table;
adding, removing, and renaming columns. Also, we will look at indexing in many
ways: not only simple indexes but also unique indexes and foreign keys. Also, we are
going to look at some methods that the Schema class provides in order to have a real
and total control over everything. Sometimes, you will need to be sure about what
exists in your database!

After all this stuff, it is not be over yet. In fact, we will explore the world of
migrations, which is something Laravel uses to do versioning of your database.
Combining the power of the Schema class with the migrations system will give
you great power over your data design. Also, it will be very easy to share your
application with another new member of your team! You know that versioning is
always the best choice.

www.allitebooks.com

http://www.allitebooks.org

Building the Database with the Schema Builder Class

[24]

An important note before going forward: even if the Schema Builder class and
migrations system are not tightly related to Eloquent, they easily create a database
with a structure that fits perfectly for the Eloquent standards and conventions. Also,
the Schema Builder and migrations system are a part of the illuminate/database
(https://github.com/illuminate/database) package; yes, the same package
from Eloquent! Let's go.

• The Schema Builder class
• Database versioning with the migrations system

The Schema Builder class
The Schema Builder class is a tool that provides you with a database agnostic way to
deal with your database design. The term database agnostic means that you will never
have to worry about what database you are using: the only important thing is to use
the right driver, as we saw before in the configuration part of the first chapter. So, if
you think of switching your database system from SQLite to MySQL or SQL Server,
don't worry: you will always have your structure ready to be used.

In the first part of this chapter, we will use some simple routes. All you have to do is
to add them to the app/routes.php file.

Working with tables
Let's start with the very, very basic phenomena. The following is the
Schema::create() method that you can use to create a new table in your database:

The create() method accepts two parameters: the first method is the name of the
table you want to create, and the second method is a closure where we will specify
all the table fields. To be more precise, the closure parameter is a Blueprint object.

https://github.com/illuminate/database

Chapter 2

[25]

When possible, I like to use type-hinting for a better code readability.

So, you may read something like this:

Schema::create('users', function(Blueprint $table)
{
$table->increments('id');
});

Don't worry, it's the same.

You will also be able to rename a table: in this case, just use the rename() method.

Schema::rename($previousName, $newName);

Finally, what about dropping a table? The method drop() is here for you.

 Schema::drop($tableName);

There is also a similar method, dropIfExists(), with the same syntax.

 Schema::dropIfExists($tableName);

As the awesomely expressive name suggests, the method drops the table only if it
exists in the database.

I often use this method instead of the simple drop() method.

Remember that if you want to check if a table exists, you can use the hasTable()
method, as follows:

 if (Schema::hasTable('books'))
 {
 // the table "books" exists...
 }

Now, let's take a look at how you can work with table columns.

Building the Database with the Schema Builder Class

[26]

Working with columns
Working with columns is quite easy. First of all, let's see how to create new columns
while adding a new table to the database.

As I told you before, we will use the $table parameter of Schema::create().

 Schema::create('books', function(Blueprint $table)
 {
 $table->increments('id');

 $table->string('title');

 $table->integer('pages_count');
 $table->decimal('price', 5, 2);

 $table->text('description');

 $table->timestamps();
 });

The Blueprint $table object has many methods, which are related to the creation
of a single new column. You can easily see that all the methods' names represent
a specific type of column. For example, string is the equivalent of VARCHAR on
MySQL, and integer is the equivalent of INT.

There are also some utility methods: if you take a look at the very first code line of
the closure, you will read an increments() method. Nothing complex, however, it
just creates an id integer field (also setting it as a primary key) with autoincrement.

Finally, you can see the timestamps() method in the last line. The Schema Builder
class also has methods that are related to some Eloquent functionalities. In this case,
the timestamps() method automatically creates two DATETIME equivalent fields,
named created_at and updated_at. They can be quite useful if you want to track
the time of insert and last update operations.

Now, why don't we make some tests, before going further?

It's a matter of seconds: just create a new GET route in the app/routes.php file and
add that Schema::create() method we saw like this:

 // remember this "use" directive!
 use Illuminate\Database\Schema\Blueprint;

 Route::get('create_books_table', function(){

 Schema::create('books', function(Blueprint $table)
 {

Chapter 2

[27]

 $table->increments('id');

 $table->string('title', 30);

 $table->integer('pages_count');
 $table->decimal('price', 5, 2);

 $table->text('description');

 $table->timestamps();
 });

 });

We will create a table named books on our database. This table will have
seven columns:

• The unique, primary key id as an integer
• The title column as a string (with 30 characters maximum)
• The pages_count integer column
• The price decimal column
• The description text column
• The created_at and updated_at columns, created by the

timestamps() method

Let's navigate to the /create_books_table URL and then open your Adminer (or
whatever tool you like to deal with your database) to verify if everything went well.

This is the result!

Building the Database with the Schema Builder Class

[28]

Good job! Let's take a look at the structure.

Perfect. Exactly what we wanted—without a single SQL line!

Note that as we had done before for tables, we can also check if a specific column
exists with the hasColumn() method:

 if (Schema::hasColumn('books', 'title'))
 {
 // the column "title" in the "books" table exists...
 }

Columns' methods reference
Here's a quick reference for all the methods you can use on the Blueprint
$table instance:

Method Description
$table->bigIncrements('id'); Incrementing ID using a big integer

equivalent
$table->bigInteger('votes'); BIGINT equivalent to the table
$table->binary('data'); BLOB equivalent to the table
$table->boolean('confirmed'); BOOLEAN equivalent to the table
$table->char('name', 4); CHAR equivalent with the length
$table->date('created_at'); DATE equivalent to the table
$table->dateTime('created_at'); DATETIME equivalent to the table

Chapter 2

[29]

Method Description
$table->decimal('amount', 5, 2); DECIMAL equivalent with a precision

and scale
$table->double('column', 15, 8); DOUBLE equivalent with precision, 15

digits in total and 8 after the decimal
point

$table->enum('choices', ['foo',
'bar']);

ENUM equivalent to the table

$table->float('amount'); FLOAT equivalent to the table
$table->increments('id'); Incrementing ID to the table (primary

key)
$table->integer('votes'); INTEGER equivalent to the table
$table->json('options'); JSON equivalent to the table
$table->longText('description'); LONGTEXT equivalent to the table
$table->mediumInteger('numbers'); MEDIUMINT equivalent to the table
$table-
>mediumText('description');

MEDIUMTEXT equivalent to the table

$table->nullableTimestamps(); Same as timestamps(), except the
fact that this allows NULLs

$table->smallInteger('votes'); SMALLINT equivalent to the table
$table->tinyInteger('numbers'); TINYINT equivalent to the table
$table->string('email'); VARCHAR equivalent column
$table->string('name', 100); VARCHAR equivalent with the length

of a string
$table->text('description'); TEXT equivalent to the table

You can also find the complete reference in the Laravel official
documentation, at the http://laravel.com/docs/5.0/
schema#adding-columns page.

Other $table object methods
If you take a look at the methods reference in the Laravel documentation, you will
probably see some more than in the list you just saw.

The first methods reference is:

 $table->timestamps();

http://laravel.com/docs/5.0/schema#adding-columns
http://laravel.com/docs/5.0/schema#adding-columns

Building the Database with the Schema Builder Class

[30]

I already used this in the example. It creates the table timestamps created_at and
updated_at columns, which are really useful if you want to track chronological
information about the creation or update of a specific record.

Eloquent also manages timestamps columns automatically, so you don't have to
worry about them in your code.

Another important (and really similar) method is as follows:

 $table->softDeletes();

It is used to add a deleted_at column to the desired table.

Sometimes, in your applications, it is really useful to keep some information even
if you don't want to show it to the final user. Think about an e-commerce orders'
history: the customer can choose to clean his history but you can't allow him/her to
physically delete records!

The soft delete system solves this problem by adding a deleted_at column to a
table in order to keep track of the delete date of a record.

Eloquent handles this system automatically, so you will be able to show a clean
history to your customer and a complete list of orders to the shop administrator.

Next, you can see this:

 $table->rememberToken();

This method adds a remember_token column.

The Laravel authentication system uses this token (a simple VARCHAR 100) to track
the user status. It is used when you click on a Remember Me checkbox in the login
page of your application.

There are also some methods you can chain after some table columns' definitions.

If you want to make a numeric column unsigned, use the following:

 $table->integer('my_column')->unsigned();

Of course, you can use it with every numeric field (float, decimal, and so on).

You can also specify if a column is nullable with nullable():

 $table->string('my_column')->nullable();

Chapter 2

[31]

If you want to specify a default value, you can use the following:

 $table->string('my_column')->default('my_default_value');

Sometimes, you will need to use BIGINT or equivalent for your
primary keys. If this is the case, use bigIncrements() instead
of increments() (that uses INT or equivalent).

Updating tables and columns
What? Yeah, I know what you are thinking—what if I have to add a book
named The Awesome Super Life of the Marvelous Francesco Malatesta?
It's a 60-character-long name!

Things change, so our database will have to change too. In a simple way, though.
You will use the table method to update an existing one.

Here you can see an example:

 Schema::table('table_name', function(Blueprint $table)
 {
 // update operations here...
 });

So, let's make a little update. Create a new route in our routes file and name it
update_books_table:

 Route::get('update_books_table', function(){

 Schema::table('books', function(Blueprint $table)
 {
 $table->string('title', 250)->change();
 });

 });

Note that we used the change() method right after the string() method.
You will use change() on changing a column. If you simply want to add a new
column to an existing table, just use this as usual:

 $table->string('title', 250);

Building the Database with the Schema Builder Class

[32]

You will need the doctrine/dbal package to change columns. To
obtain it, just add the doctrine/dbal to your composer.json file:
2.5.0 dependency.
Then, type composer update in your terminal and you are good to go.

Browse to the new URL and update the table. Now you will be able to add my
awesome biography to your library in the future. Be proud of it.

Indexes and foreign keys
Let's take another step forward. Let's imagine that we are upgrading our application
and we want to add the possibility to store book authors and related data.
Also, we will give the possibility to the user to search a book by its title.

We would have to do a couple of the following things:

• Create the authors table to store authors' data
• Update the books table to insert an external foreign key and an index to the

title column

You already know how to update an existing table but what about indexing columns
and creating foreign keys?

Adding indexes is quite easy with the Schema Builder. There are some expressive
methods you can use.

First of all, you can create a primary key with the primary() method. The parameter
is the field you want to index.

 $table->primary('id');

If you need, you can specify an array of columns as a single index.

 $table->primary(['first_name', 'last_name', 'document_number']);

The method unique() is used to create a unique key:

 $table->unique('email');

Finally, if you want to add a simple index, you can use the index() method!

 $table->index('title');

Chapter 2

[33]

You can also add a foreign key, if you need. In the following example, we are
referencing the author_id column (on a hypothetical books table, maybe) to the id
column in the authors table.

 $table->foreign('author_id')->references('id')->on('authors');

Specifying onDelete and onUpdate constraint operations is not a problem.

 $table->foreign('author_id')
 ->references('id')
 ->on('authors')
 ->onDelete('cascade');

If you don't need your indexes anymore, you can easily drop them:

 $table->dropPrimary('authors_id_primary');
 $table->dropUnique('authors_email_unique');
 $table->dropIndex('books_title_index');
 $table->dropForeign('books_author_id_foreign');

The convention used to create an index name is
table-name_column-name_index-type.

Alright, now that you have a good overview of indexes with the Schema Builder
class, let's add the new functionality to our example.

Create a new GET route. This time it is named update_books_table_2.

 Route::get('update_books_table_2', function(){

 // creating the authors table...
 Schema::create('authors', function(Blueprint $table)
 {
 $table->increments('id');

 $table->string('first_name');
 $table->string('last_name');

 $table->timestamps();
 });

 Schema::table('books', function(Blueprint $table)
 {

www.allitebooks.com

http://www.allitebooks.org

Building the Database with the Schema Builder Class

[34]

 // creating the index on the title column...
 $table->index('title');

 // creating the foreign key...
 $table->integer('author_id')->unsigned();
 $table->foreign('author_id')->references('id')-
>on('authors');
 });

 });

That's all! Let's verify all with Adminer, as we did before:

Yeah! It worked.

Chapter 2

[35]

Database versioning with the migrations
system
Until this point, we worked with the Schema class using some simple routes.
Quite easy, but it's not a very good practice. You know: the single responsibility
principle is not just a bedtime story.

Also, it's not just about the code: the database too should have a fully functional
version control system in order to keep track of all the updates and facilitate a new
member in your team.

Well, the migrations system is here to help. You can see it as a version control system
for your database, which is made up of many files. Every single one of these files is
a class with the two methods: up() and down(). In the up() method, you will put
all of your database construction logic. In the down() method, instead, you will put
anything related to rolling back what you did in the up() method.

Creating migrations
Let's make the first basic example. We already have the books and authors tables.
Imagine that we want to gather data about our books' publishers.

We will have to:

• Create a new table called publishers, with at least the name of the publisher
• Create a new foreign key publisher_id in books

Let's make it with a migration file! Open your terminal and type the following:

 php artisan make:migration publishers_update

Wait for a few seconds and then go to the database/migrations folder. You will
find a file named like this:

 2015_03_06_105131_publishers_update.php

Open it. This class already has empty up() and down() methods:

 <?php

 use Illuminate\Database\Schema\Blueprint;
 use Illuminate\Database\Migrations\Migration;

 class PublishersUpdate extends Migration {

Building the Database with the Schema Builder Class

[36]

 public function up()
 {
 //
 }

 public function down()
 {
 //
 }

 }

Now, fill them with some Schema Builder instructions, like this.

 <?php

 use Illuminate\Database\Schema\Blueprint;
 use Illuminate\Database\Migrations\Migration;

 class PublishersUpdate extends Migration {

 public function up()
 {
 Schema::create('publishers', function(Blueprint $table)
 {
 $table->increments('id');

 $table->string('name');

 $table->timestamps();
 });

 Schema::table('books', function(Blueprint $table)
 {
 $table->integer('publisher_id')->unsigned();
 $table->foreign('publisher_id')->references(
 'id')->on('publishers');
 });
 }

 public function down()
 {
 Schema::table('books', function(Blueprint $table)
 {
 $table->dropForeign('books_publisher_id_foreign');

Chapter 2

[37]

 $table->dropColumn('publisher_id');
 });

 Schema::drop('publishers');
 }

 }

Quite linear: what we do in up() we undo in down(). Of course, in the reverse order.
Remember, it's a mirror operation!

Now, it's time to run your migrations. All you have to do is run php artisan
migrate; it loads all the migration classes and executes their up() method. In this
way, you can build your database accordingly to your files. The execution order is
decided by the file name. The file we just created is named 2015_03_06_105131_
publishers_update.php.

This means that this file was created on March 6, 2015 at 10:51:31. As you can easily
imagine, all the migrations will be executed in a chronological order. To make
things clearer, delete the two 2014_10_12_000000_create_users_table.php and
2014_10_12_100000_create_password_resets_table.php. We won't need them.

Return to your terminal and type:

 php artisan migrate

Wait for a few seconds and you will get an output really similar to the following:

 Migration table created successfully.
 Migrated: 2015_03_06_105131_publishers_update

Now, return to your database. The update was done successfully, but we have
another new table: the migrations table. Laravel uses this table to keep track of
every update to the database. So, if you make another update to your application
(with another new migration) and you run again the php artisan migrate
command, you will execute only the new migrations and not the old ones.
Exactly, version control, as I mentioned before.

Rolling back migrations
Let's try this rollback thing right now. In your terminal, type

 php artisan migrate:rollback

Then, go back to your database: no more publishers table and no more related
foreign key! Cool!

Building the Database with the Schema Builder Class

[38]

Got it? Good. Now, type this again:

 php artisan migrate

Let's go forward.

You could get a class not found error while executing the php
artisan migrate command.
Don't worry, just type composer dump-autoload in your terminal
and try again! Even the best, sometimes, make mistakes.

More examples, more migrations
Now, what about another example?

Let's imagine another feature. Alright, I have an idea: imagine that you want to
specify some tags for every book you store with your application. This time you
will have two things to do:

• Create a new tags table to store tags.
• Create a new book_tag table, as we are going to represent a many-to-many

relationship. In this table, you will find the book_id and tag_id.

First of all, create a new migration. Open your terminal and type:

 php artisan make:migration tags_update

Also, update the file as the following:

 <?php

 use Illuminate\Database\Schema\Blueprint;
 use Illuminate\Database\Migrations\Migration;

 class TagsUpdate extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('tags', function(Blueprint $table)

Chapter 2

[39]

 {
 $table->increments('id');

 $table->string('name');

 $table->timestamps();
 });

 Schema::create('book_tag', function(Blueprint $table)
 {
 $table->increments('id');

 $table->integer('book_id')->unsigned();
 $table->integer('tag_id')->unsigned();

 $table->foreign('book_id')->references(
 'id')->on('books');
 $table->foreign('tag_id')->references('id')->on('tags');
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('book_tag');
 Schema::drop('tags');
 }

 }

I like to write in the up() and down() methods at the same time.
In that example you just saw, I put in up() the create method
for tags. Then, I passed to the down() method and added the
drop('tags') method call. Then, I went back to up() and added
the book_tag table, and I finally went to down() again to drop the
book_tag table.
Working in this way helps me reduce distraction errors.

Now, open the terminal and type:

 php artisan migrate

Building the Database with the Schema Builder Class

[40]

Go to your database. Open the migrations table to see what happened:

We have two different batches here. The first batch (1) is related to the publisher's
update. The second batch (2) is related to the tags system update.

Why am I telling this to you? Who cares?

Well, when you type php artisan migrate:rollback in your terminal, the
migrations system searches for the last batch and rolls it back. Not every batch, just
the last batch. This means that the first rollback command will undo everything
related to the tags system. If you type it again, the migrations system will also undo
everything about the publisher's update.

With the batch number, you can know how many iterations you did on your
database. However, there is another important thing you need to know: regarding
our example, if you roll back two times and then migrate again, both migration files
will be grouped under batch 1.

Also, you can roll back everything with this:

 php artisan migrate:reset

You can roll back and migrate everything again with this:

 php artisan migrate:refresh

Finally, you will get a list of all the migrated/rolled back migrations with this:

 php artisan migrate:status

That's all! With this last command, we are also done with migrations.

Chapter 2

[41]

Summary
Finally, the hero leaves his home. After the training and obtaining the right
foundations, he is really ready to go.

Remember that the Schema Builder class and migrations system are not just about
building your DB. In this chapter, you learned how to improve your database design
method in a smarter way without the need for a single SQL line. Also, by using
migrations, you are not going to need anymore to download database dumps or, in
some extreme way, install any extra tool to deal with it.

Everything is done with the artisan migrate commands. However, as I already
told you, this was just a sample. The real thing is arriving.

In the next chapter, we will go deeply and straight into the most important and
atomic Eloquent component: the model.

Are you ready, hero?

[43]

The Most Important
Element – the Model!

Finally, I can say it: things are getting really, really serious from this moment. In the
previous chapters, you studied everything you needed to make a start. Maybe it was
a little annoying, but you knew that you would need it. Now, stop talking about the
past; it's over. In this chapter, many amazing things await.

As you can imagine by the title, this part is going to be about the most important and
atomic Eloquent element: the model. We will analyze the M in MVC. Considering
that you are reading a book about creating a data-based application, exactly, really
important! However, I don't want to bore you anymore. Let's talk about what we are
going to see in the next sections.

Usually, there is a standard way to look at the Eloquent documentation. It's the same
as you can see on the Laravel site. In my initial Laravel days, I used those pages but I
felt a little incomplete. So, I changed things a little bit but in a more simplified way. If
you have ever developed a web application in your life, I'm quite sure that you made
a data-based application with tables and records. Right? Well...

If you think about it, you can do four basic operations on them. Whenever you
develop an application, there's a very high possibility that you are going to
implement some create, read, update, and delete logic for your items. This is exactly
what we are going to see in this chapter.

First of all, we will introduce the simple, basic model. It will be a single line of
code! Then, we will talk about CRUD (create, read, update, and delete) operations
with Eloquent. After that point, you will have all the basics and an overview of the
mechanism. We will also deal with the where() method and everything related,
unscrambling everything about conditions and selections.

www.allitebooks.com

http://www.allitebooks.org

The Most Important Element – the Model!

[44]

After that, we will go deep into the Model class, studying the mass assignment
as another way to store and update our data. Then, we will discuss timestamps
and soft deletes, and find out how Laravel and Eloquent deal with dates. After
that, you will learn about query scopes and how to use them to improve your
development process.

Also, we will take a look at many cool methods to transform our data in order to
be shown (or stored) correctly: attributes casting, mutators, date mutators, and
accessors. If that isn't enough, we will explore all the Model-related events that you
can use to introduce new behaviors in your code without breaking it. Also, Model
observers will be analyzed when an event isn't enough.

In the last part of this chapter, we will explore some useful methods and features of
the Model class, diving directly into the basic Model class code! Not bad, huh? Let's
start! Here are the topics:

• Creating a Model
• Create, read, update, and delete operations basics
• Where, aggregates, and other utilities
• Mass assignment – for the masses
• Query scopes
• Attributes casting, accessors, and mutators
• Model events and observers
• Descending in the code

Creating a Model
First of all, let's see how you can create a Model and how its basic structure is made.

The fastest way to create a Model is to use the following command, with a parameter
that you can use to specify the model name:

php artisan make:model

So, let's imagine that you want to create a Book model. The steps are as follows:

1. All you have to do is use the following command:
php artisan make:model Book

Of course, you can also create it manually; usually, Laravel puts Models in
the app folder.

Chapter 3

[45]

2. Once you have done this, let's open the Book.php file under app to see
what's inside.

Wait. What? An empty class? Seriously?

Yes.

Laravel is designed to create a great web application in very little time. Eloquent
(and its models) are no exceptions. The class you can see here is ready to be used in
your application; using it, you will be able to do everything related to your books.

Talking about SQL databases, you can think of a connection between every
model and table. If you respect a certain convention, Laravel automatically guesses
the table name starting from the model name. So, if I have a model by the name of
Book, Laravel will search for a books table on the database, without the need for
specifying it explicitly.

If you need to bind a certain model with another table, you can specify the name
adding it as a $table property, like this:

 <?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Book extends Model {

 protected $table = 'my_books';

}

Alright, nothing more to say here. Now, let's play with our new model.

The Most Important Element – the Model!

[46]

Create, read, update, and delete
operations basics
Every single article I read about Eloquent usually starts with some reading
operations. I don't like it. I will teach you how to create and insert new records,
then we will fetch them with some reading operations.

No boring test inserts with some external administration tool.

Creating operations
Let's create our first book! As a reference for the record structure, we will use the
books table that we created in the previous chapter. The table has a very simple
structure: a title, page count (pages_count), price, and description.

The procedure is as easy as creating an object.

Well, actually it is exactly the same. Create a new GET route in routes.php file
under app/Http/, named book_create and type this:

 Route::get('book_create', function(){

 $book = new \App\Book;

 $book->title = 'My First Book!';
 $book->pages_count = 230;
 $book->price = 10.5;
 $book->description = 'A very original lorem ipsum dolor sit
 amet...';

 });

If you think about it, there is something strange here! After checking the Model file,
you can see that there are no title or pages_count properties declared. Among
other things, Eloquent heavily uses magic methods. When the final query is built
Laravel will use the names of the properties as the table columns to fill. Big deal!

Chapter 3

[47]

Now, if you run this code and then check your table, you will not find any record
yet. You must add a single final instruction: the save() method call.

 Route::get('book_create', function() {

 $book = new \App\Book;

 $book->title = 'My First Book!';
 $book->pages_count = 230;
 $book->price = 10.5;
 $book->description = 'A very original lorem ipsum dolor sit
 amet...';

 $book->save();

 });

Execute it. Now, your book is saved on the database.

If you want, you can access a specific record field even after you've saved it.
Let's make another example.

 Route::get('book_create', function() {

 $book = new \App\Book;

 $book->title = 'My First Book!';
 $book->pages_count = 230;
 $book->price = 10.5;
 $book->description = 'A very original lorem ipsum dolor sit
 amet...';

 $book->save();

 echo 'Book: ' . $book->id;

 });

There is another little thing about Eloquent conventions; that is,
every single table has an ID, autoincrementing a primary key.

The Most Important Element – the Model!

[48]

Reading operations
Now that we've created some example records, why don't we try to read them?
An example is better than a thousand words.

 Route::get('book_get_all', function(){

 return \App\Book::all();

 });

With a single instruction, here we are returning all the table records. The output is
going to be very similar to this:

 [
 {
 id: 1,
 title: "My First Book!",
 pages_count: 230,
 price: "10.50",
 description: "A very original lorem ipsum dolor sit
 amet...",
 created_at: "2015-03-24 16:45:59",
 updated_at: "2015-03-24 16:45:59"
 }
]

If you feel strange about this, don't worry. If you return, in a route
(or in a controller method) the results of an Eloquent model query,
the results will be automatically transformed in JSON. It is a very
useful shortcut if you are thinking about building a RESTful API.

Let's create another book, to give our tests more elements.

 $book = new \App\Book;

 $book->title = 'My Second Book!';
 $book->pages_count = 122;
 $book->price = 9.5;
 $book->description = 'Another very original lorem ipsum dolor
 sit amet...';

 $book->save();

Chapter 3

[49]

After this, again execute your code in the book_get_all route. The result will be
like this:

 [
 {
 id: 1,
 title: "My First Book!",
 pages_count: 230,
 price: "10.50",
 description: "A very original lorem ipsum dolor sit
 amet...",
 created_at: "2015-03-24 16:45:59",
 updated_at: "2015-03-24 16:45:59"
 },
 {
 id: 2,
 title: "My Second Book!",
 pages_count: 122,
 price: "9.50",
 description: "Another very original lorem ipsum dolor sit
 amet...",
 created_at: "2015-03-24 16:57:15",
 updated_at: "2015-03-24 16:57:15"
 }
]

However, we can do more. In fact, another great method is the find() method.
You can use it like this:

 Route::get('book_get_2', function(){

 return \App\Book::find(2);

 });

This method takes the primary ID as a parameter and returns the single record as
an instance of the model.

Have a look at its output:

 {
 id: 2,
 title: "My Second Book!",
 pages_count: 122,
 price: "9.50",

The Most Important Element – the Model!

[50]

 description: "Another very original lorem ipsum dolor sit
 amet...",
 created_at: "2015-03-24 16:57:15",
 updated_at: "2015-03-24 16:57:15"
 }

Note that this time you don't have an array but a single object. These static methods,
of course, aren't all Eloquent has to offer. The cool part starts here.

Take a look at this:

 Route::get('book_get_where', function(){

 $result = \App\Book::where('pages_count', '<', 1000)->get();
 return $result;

 });

You can use the where() method to filter your results. Then, after specifying your
criteria, the get() method retrieves the results from the database. For a better
understanding, imagine that the where() method is building a query. The get()
method executes it. This last one is a trigger method.

If you just want to retrieve the first result instead of all of them, you can use the
first() method instead of get().

 Route::get('book_get_where', function(){

 $result = \App\Book::where('pages_count', '<',
 1000)->first();
 return $result;

 });

Before we go any further, here's a little reminder that can save you a
lot of time. Actually, when you use trigger methods such as get() or
first(), you can get two different kinds of results.
When you use first(), you are selecting a single instance. So, you
will receive as a result (if present) a single instance of a certain model.
Otherwise, if you are using all(), or get(), you will get a collection
of instances.

Chapter 3

[51]

Getting back to our where(), you can chain as many calls as you wish.

 Route::get('book_get_where_chained', function(){

 $result = \App\Book::where('pages_count', '<', 1000)
 ->where('title', '=', 'My First Book!')
 ->get();

 return $result;

 });

You can iterate through results in a very simple way: simple for each is enough.

 Route::get('book_get_where_iterate', function(){

 $results = \App\Book::where('pages_count', '<',
 1000)->get();

 if(count($results) > 0)
 {
 foreach($results as $book){

 echo 'Book: ' . $book->title . ' - Pages:
 ' . $book->pages_count . '
';

 }
 }
 else
 echo 'No Results!';

 return '';
 });

The $results object is countable, so you can also check if you have results or not.

Have a look at this line:

 echo 'Book: ' . $book->title . ' - Pages: ' .
 $book->pages_count . '
';

You probably already noted that you can access a single record field in the same way
as you did for setting them: magic methods.

The Most Important Element – the Model!

[52]

If you like it, you can access record fields like an array.
Try to switch $book->title to $book['title'] and see
what happens.

Updating operations
Updating a record is as easy as creating it. To be honest, it is exactly the same thing
with a single change in the first instruction.

 Route::get('book_update', function() {

 $book = \App\Book::find(1);

 $book->title = 'My Updated First Book!';
 $book->pages_count = 150;

 $book->save();

 });

Instead of creating it, we are retrieving from the database the instance of the
Model we desired. After that, using magic methods, we modified and then saved it.
As happened for the insert procedure, the change you make becomes persistent after
the save() call.

Deleting operations
Deleting a record is the simplest thing.

 Route::get('book_delete_1', function() {

 \App\Book::find(1)->delete();

 });

Time to die, Book!

Chapter 3

[53]

Here's a key concept. When you use the update() and delete()
methods, you are working on a Model instance, just like you did before
while creating it.
So, if you run a \App\Book::find(1) instruction, you will get a
Book class instance as a result. For some, it will be obvious, but many
newcomers often have problems with this.

where, aggregates, and other utilities
No doubt that the where() method will be one of your best friends while building
queries and selecting records in your work with Eloquent. Don't you think it would
be worth taking a look at it in detail?

Let's recap what we already know.

You can use the where() method to filter results. The correct syntax you have to
use is this:

 where('field_name', 'operator', 'term')

So, for example, you can filter all the books with less than 100 pages with

 where('pages_count', '<', 100)

Also, you can chain more where methods, one after another, to build more complex
queries. Let's select all those books that have less than 100 pages, with a title that
starts with an M.

 where('pages_count', '<', 100)->where('title', 'LIKE', 'M%')

Two chained conditions are equivalent to condition1
AND condition2.

Great!

www.allitebooks.com

http://www.allitebooks.org

The Most Important Element – the Model!

[54]

where and orWhere
However, you know that this is not enough. Usually, in a real-world application,
you may have more complex conditions. First of all, you may need to get results
that respect a condition OR another condition. The AND condition is not a standard;
so, here's the solution: orWhere().

 Route::get('book_get_where_complex', function(){

 $results = \App\Book::where('title', 'LIKE', '%Second%')
 ->orWhere('pages_count', '>', 140)
 ->get();

 return $results;

 });

In this code, we are telling Eloquent to take all the books that have the word Second
in the title or all the books with more than 140 pages.

Yeah, this is a little better than before.

Now let's try to imagine another more complex condition: we want to find all the
books that have more than 120 pages and the word Book in the title, or all the books
that have less than 200 pages and an empty description.

 Route::get('book_get_where_more_complex', function(){

 $results = \App\Book::where(function($query){

 $query
 ->where('pages_count', '>', 120)
 ->where('title', 'LIKE', '%Book%');

 })->orWhere(function($query){

 $query
 ->where('pages_count', '<', 200)
 ->orWhere('description', '=', '');

 })->get();

 return $results;

 });

Chapter 3

[55]

Instead of specifying three parameters for where() and orWhere() methods,
you can use a single closure parameter that takes a $query argument. Starting
from that $query object, you will be able to do every selection and filtering in the
way you prefer.

Of course, you can nest many of them:

 Route::get('...', function(){

 $results = \App\Book::where(function($query){

 $query
 ->where(function($query){

 // other conditions here...

 $query->where(function($query){

 // deeper and deeper in the seas of
 conditions...

 });

 })
 ->orWhere('field', 'operator', 'condition');

 })->orWhere(function($query){

 $query
 ->where('field', 'operator', 'condition')
 ->orWhere(function($query){

 // other conditions here...

 });

 })->get();

 return $results;

 });

Alright, stop. I think that the concept is quite clear now. Let's see some other forms of
where.

The Most Important Element – the Model!

[56]

First of all, here's whereBetween that you can use to filter some fields using a range,
not only a single value.

 $results = \App\Book::whereBetween('pages_count',
 [100, 200])->get();

With that, we just got all the books that have a page count between 100 and 200.

You can also use whereIn to check if a specific field is in an array of other values.

 $results = \App\Book::whereIn('title', ['My First Book!',
 'My Second Book!'])->get();

Finally, you can use whereNull if you want to get all the records with a certain
column equal to null.

 $booksThatDontExist = \App\Book::whereNull('title')->get();

Magic wheres
Another great and cool feature is the magic where. You know that everything
in Laravel has a little bit of magic here and there. Obviously, Eloquent isn't
an exception.

In fact, you can use an alternative syntax for your where clause, a magic syntax
that lets you define the interested field as the method name.

You already know this syntax:

Route::get('book_get_where', function(){

 $result = \App\Book::where('pages_count', '=',
 1000)->first();
 return $result;

 });

Now, you can get the same result with this code:

Route::get('book_get_where', function(){

 $result = \App\Book::wherePagesCount(1000)->first();
 return $result;

 });

Chapter 3

[57]

Obviously, the wherePagesCount method doesn't exist but Laravel automatically
creates a quick where clause using PHP magic methods. As you can see from the
example (and as the syntax suggests), you cannot use this technique every time
as it works only with the equal sign.

However, it's good to know a similar shortcut, right?

Aggregates
Sometimes, you will need to use the aggregates functions. No problem! Here is how
you can do it with Eloquent.

 \App\Book::count();

This is an example of its practical use:

 Route::get('book_get_books_count', function(){

 $booksCount = \App\Book::count();
 return $booksCount;

 });

Exactly as you saw before for get() and first() methods, you can use aggregate
methods with where methods. Here, we are counting the number of the books with
more than 140 pages.

 Route::get('book_get_books_count', function(){

 $booksCount = \App\Book::where('pages_count', '>',
 140)->count();
 return $booksCount;

 });

Obviously, count() is not the only aggregate. Let's see them with some other
where() examples to do more practice. This time, we are searching for the
minimum number of pages (but the books with more than 120 pages, at least).

 Route::get('book_get_books_min_pages_count', function(){

 $minPagesCount = \App\Book::where('pages_count', '>',
 120)->min('pages_count');
 return $minPagesCount;

 });

The Most Important Element – the Model!

[58]

You can also do the same thing with max():

 Route::get('book_get_books_max_pages_count', function(){

 $maxPagesCount = \App\Book::where('pages_count', '>',
 180)->max('pages_count');
 return $maxPagesCount;

 });

Now, let's find the average price for all the books that have the Book word in
the name:

 Route::get('book_get_books_avg_price', function(){

 $avgPrice = \App\Book::where('title', 'LIKE',
 '%Book%')->avg('price');
 return $avgPrice;

 });

Finally, let's get the sum of all the page counts for all the books with more
than 100 pages.

 Route::get('book_get_books_avg_price', function(){

 $countTotal = \App\Book::where('pages_count', '>',
 100)->avg('price');
 return $countTotal;

 });

Utility methods
As you probably imagined, Eloquent has a lot of utilities and methods that can
improve your life as a developer. Trying to cover every single method would be
hard but besides the most common methods, there are a few other methods that
deserve to be here.

First of all, the skip() and take() methods that are used to implement some
pagination in your queries.

 $books = \App\Book::skip(10)->take(10)->get();

Chapter 3

[59]

We are telling Eloquent to take 10 records and skip 10 from the start. So, if skip(0)-
>take(10) will take records from 1 to 10, skip(10)->take(10) will take from 11 to
20, and so on.

Of course, you can't also miss the orderBy, groupBy, and having methods. If you
know a little about SQL databases (and if you are here, I think you do) you won't
have any problem understanding this code:

 // orderBy
 \App\Book::orderBy('title', 'asc')->get();

 // groupBy
 \App\Book::groupBy('price')->get();

 // having
 \App\Book::having('count', '<', 20)->get();

Mass assignment... for the masses
You got the basics. Cool!

Now, you have to know about another couple of ways to insert a record
with Eloquent.

The first is the Model constructor. You can pass an associative array as a parameter
of the constructor call, something like this:

 $book = new \App\Book([
 'title' => $title,
 'pages_count' => $pagesCount,
 'price' => $price
]);

Another is the create() method that you can call statically from the model itself.

 $book = \App\Book::create([
 'title' => 'My First Book!',
 'price' => 10.50,
 'pages_count' => 150,
 'description' => 'My lorem ipsum dolor description here...'
]);

The Most Important Element – the Model!

[60]

Similar to the constructor, this create() method takes an associative array as a
parameter and every key in this array corresponds to a column on the table (and a
magic property on the model). The returned value (the one that is stored in $book) is
an instance of the Book class.

This is called mass assignment and, until this point, everything is fine except
for a serious security issue. In fact, sometimes you could pass the entire request
input array as a parameter. Trust me: sooner or later, you will do it.

The $request object you are going to see in the following example
is a request instance that you can use to deal with the current request
data. I will use it to retrieve some hypothetical POST data from a
form (with the all() method) we will use to create a new book.

Something like this can be used:

 $book = new \App\Book($request->all());

 // or...

 $book = \App\Book:create($request->all());

Technically, you don't know exactly what's in $request->all() so it is not the best
practice, right? However, you can resolve this issue quite easily by adding a single
property to your model—fillable or guarded.

Let's take an example for a better understanding of the concept. Imagine that for
some reason you specify other fields in the form you already use for a new book
insert, maybe the current user ID for logging purposes.

However, you just want to insert four single fields: title, pages_count, price,
and description. Nothing else!

The key property is fillable:

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

Chapter 3

[61]

 protected $fillable = [
 'title',
 'price',
 'pages_count',
 'description'
];

 }

You can execute the code like this:

 $book = \App\Book:create($request->all());

From the moment you execute the code, the model will search for title, pages_
count, price, and description items. Nothing more! If you also have a user_id
field in your request data array, it will be ignored by the model.

Of course, be careful and check twice what you put in the $fillable array of your
models. Sometimes, developers easily forget the rights fields, and they pass hours
and hours after an empty database record.

So, if you actually get a problem with an empty database record, remember: check
your fillable.

The guarded property has a similar behavior but does the opposite thing: if
fillable is a whitelist, then guarded is a blacklist. A mechanism like a blacklist can
be extremely useful if you store some important and sensible information that you
don't want to get updated by the user in any way.

Also, sometimes you will need to guard every single attribute of your model. No
problem, use guarded like this:

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 protected $guarded = ['*'];

 }

The Most Important Element – the Model!

[62]

If you put a field both in the fillable and guarded arrays, the
model behavior will give the precedence to fillable and the field
will be filled in.
Also, use fillable and guarded wisely. Remember also, that if you
are using the guarded array and you are passing a classic full request
data array to your model, you could update some unwanted fields
and get some really unwanted errors.
Boring errors! Avoid them.

Timestamps and soft deletes
Time to cover two awesome features of the Model class: timestamps and soft deletes.
How many times have you had to manually handle the creation date of a record and
its last update time? Model timestamps are here to help.

Also, how many times have you had to create a delete feature while maintaining
some information about your data, if not at all? Yeah, the soft deleting feature is
here to help too.

Timestamps
Do you remember the last method we called in our books table migrations? No?

Don't worry, here it is:

 Schema::create('books', function(Blueprint $table)
 {
 // other fields...

 $table->timestamps();
 });

Exactly, it is the timestamps() method. This special Schema Builder method is used
to create two separate fields: created_at and updated_at, both MySQL DATETIME
or equivalent. Eloquent automatically handles these two fields when you create or
update a record.

It can be extremely useful: how many times did you have to deal with some last edit
data on a specific table? Also, imagine how much easier it could be with these two
fields to handle some scheduled article posting.

Chapter 3

[63]

However, sometimes they are not so useful: you can disable them just by setting the
timestamps property model to false.

 <?php

 namespace App;

 class Book extends Model {

 public $timestamps = false;

 }

Obviously, if you plan to disable timestamps you can delete
the corresponding timestamps() Schema Builder call in your
migration. You are not going to need it anymore.

You can eventually specify the format of your timestamps, if needed. Here's an example:

 <?php

 namespace App;

 class Book extends Model {

 protected $table = 'books'';

 protected function getDateFormat()
 {
 // returining a different timestamp format!
 return 'd/m/Y';
 }

 }

All you have to do is to implement the getDateFormat method in your model and
let it return a string that describes the desired format.

In the returned string, you can insert anything that is a valid format
for the date() PHP function (you can find a complete reference at
http://php.net/manual/en/function.date.php).

http://php.net/manual/en/function.date.php

The Most Important Element – the Model!

[64]

Soft deleting
The soft deleting feature is a really interesting feature that can be useful on
many occasions.

If you decide to activate soft deleting, you will never really delete a record: instead,
a deleted_at column will be updated with the date of the operation, but nothing
more. Eloquent will work exactly like before but you will never lose anything.

It could be a perfect fit for an e-commerce database that handles orders. The
customer could decide to clear his order history. However, in order to keep
accounts perfect, the shop owner would continuously need every single order detail.

As you can easily imagine, from the previous chapter, in order to activate the
soft deleting feature, you will have to make a call to softDeletes() Schema
Builder method.

 Schema::create('books', function(Blueprint $table)
 {
 // other fields...

 $table->softDeletes();
 });

After this, you will have to include the SoftDeletes trait in the model.

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\SoftDeletes;

 class Book extends Model {

 use SoftDeletes;

 protected $dates = ['deleted_at'];

 }

Nothing more!

Also, working with soft deleted data is really easy. Let's implement a simple example
based on the situation we described before (the customer order's details
and shop owner's need).

Chapter 3

[65]

First of all, here's an example model:

 <?php // Order.php

 namespace App;

 use Illuminate\Database\Eloquent\SoftDeletes;

 class Order extends Model {

 use SoftDeletes;

 protected $dates = ['deleted_at'];

 }

In his/her order history, a customer should see only his/her existent orders and not
deleted orders. I used quotation marks because we are talking about records
that always exist.

 // getting all the orders

$orders = \App\Order::orderBy('created_at', 'desc')->get();

Nothing really special!

What about the shop owner? The magical word is withTrashed:

 // getting all the orders, including the "deleted" ones...

$orders = \App\Order::withTrashed()->orderBy('created_at',
'desc')->get();

The withTrashed method automatically includes every result that is actually
present in the table, regardless of the deleted_at field value.

Also, if you need to see only the soft deleted fields, change withTrashed to
onlyTrashed.

 $trashedOrders = \App\Order::onlyTrashed()->orderBy(
 'created_at', 'desc')->get();

Finally, you can restore a record that has been deleted with the restore method.

 $trashedOrder = \App\Order::find($trashedOrderId);
 $trashedOrder->restore();

 // $trashedOrder is not so trashed anymore...

The Most Important Element – the Model!

[66]

If you prefer, you can execute the restore operation using a query as a filter.

 \App\Order::where('customer_id', '=', $customerId)->restore();

Alright, I know what you are thinking: this feature is cool but what if I want to really
delete a field?

No problem; just use forceDelete.

 order = \App\Order::find($orderId);

 // bye bye... forever :'(
 $order->forceDelete();

Query scopes
Query scopes are very funny and also powerful. I really like them because, like many
programmers out there, I am absolutely and overwhelmingly lazy. I also have a great
justification for my laziness: the Don't Repeat Yourself (DRY) principle.

In a few words, they let you reuse some logic in your queries. It is useful if you have
similar queries in your application and you don't want to write them again and again
every single time.

Let's take an example.

 <?php // Book.php

 namespace App;

 class Book extends Model {

 public function scopeCheapButBig($query)
 {
 return $query->where('price', '<',
 10)->where('pages_count', '>', 300);
 }

 }

What happened? I declared a scopeCheaperButBig method. The scope prefix is
used to specify that this is going to be used as a scope.

Now, how can I use a scope?

Chapter 3

[67]

Here it is:

 <?php

 $bigAndCheaperBooks = \App\Book::cheapButBig()->get();

It is a cool feature. If you also think that you can split your logic in a more intelligent
way, you can do it as follows:

 <?php // Book.php

 namespace App;

 class Book extends Model {

 public function scopeCheap($query)
 {
 return $query->where('price', '<', 10);
 }

 public function scopeExpensive($query)
 {
 return $query->where('price', '>', 100);
 }

 public function scopeLong($query)
 {
 return $query->where('pages_count', '>', 700);
 }

 public function scopeShort($query)
 {
 return $query->where('pages_count', '<', 100);
 }

 }

Use it accordingly, reducing repeated code.

 <?php

 // getting cheaper and longer books;
 $cheapAndLongBooks = \App\Book::cheap()->long()->get();

The Most Important Element – the Model!

[68]

 // getting most expensive and longer books;
 $expensiveAndLongBooks = \App\Book::
 expensive()->long()->get();

 // getting cheaper and shorter books;
 $cheapAndShortBooks = \App\Book::cheap()->short()->get();

 // getting expensive and shorter books;
 $expensiveAndShortBooks = \App\Book::
 expensive()->short()->get();

If you need it, you can also define dynamic scopes in order to pass parameters to
your scopes. If you like it, calling a scope inside another is not a problem.

 <?php // Book.php

 namespace App;

 class Book extends Model {

 public function scopeLong($query)
 {
 return $query->where('pages_count', '>', 700);
 }

 public function scopeLongAndCheaperThan($query, $amount)
 {
 return $query->long()->where('price', '<', $amount);
 }

 }

Attributes casting, accessors, and
mutators
Eloquent has many ways to transform the model data into something more readable
or usable (and vice versa). In this chapter, we are going to analyze three of them:
attributes casting, accessors, and mutators.

Chapter 3

[69]

Attributes casting
The easier way to transform your model attributes while accessing them is the
attributes casting. In a few words, it lets you define what attribute you want to
cast and what is going to be the destination type.

Suppose that you have another integer field in your books table: is_rare.
If the book is rare, this will be equal to 1, 0 otherwise. However, when you
work with it, the best thing would logically be as follows:

 if($book->is_rare)
 {
 // do wow things here...
 }
 else
 {
 // do common things here...
 }

It will not be something like this:

 if($book->is_rare === 1)
 {
 // ...
 }

Right? Good.

So, all you have to do to fix this problem is to specify, in your model, the
casts array:

 <?php // Book.php

 namespace App;

 class Book extends Model {

 protected $casts = [
 'is_rare' => 'boolean',
];

 }

From this moment, every time you call the is_rare attribute, it will be automatically
converted to the Boolean corresponding value and returned.

The Most Important Element – the Model!

[70]

The supported types for casting are: integer, real, float, double, string, Boolean,
object, and array.

As also the documentation suggests, the array casting type is
useful when you have a JSON array stored in a specific table
column and you want to work with it quickly.

Accessors and mutators
Attributes casting is very useful but has some limitations. Sometimes, starting from
a simple value stored in the database, you need to do more complex work on it.
Accessors and mutators are here to help.

To be more specific, an accessor is a method that is executed when the user reads
a specific attribute. The accessor works on the attribute stored in the database and
returns it. A mutator works in the opposite way: when you store a value, the mutator
works, does its job and then saves it in the table. Let's say they are sorts of getters
and setters.

Defining an accessor (or a mutator) is not so difficult: all you have to do is to follow a
naming convention.

Let's start with something simple. Imagine that every time that you access the price
of your book, you want to put the dollar symbol $ at the beginning of the string.

 <?php // Book.php

 namespace App;

 class Book extends Model {

 public function getPriceAttribute()
 {
 return '$ ' . $value;
 }

 }

The naming convention for an accessor is simple as shown:

• The method name starts with get
• The middle part of the name is the attribute name, which is camel cased
• The method name ends with Attribute

Chapter 3

[71]

Nothing more.

Now, have a look at this:

 $book = \App\Book::find(1);

 echo $book->price;
 // output: $ 10.50

Every time you have the preceding code, the mutator is very similar. This time,
we want to store a lowercase version of the title.

 <?php // Book.php

 namespace App;

 class Book extends Model {

 public function setTitleAttribute($value)
 {
 $this->attributes['title'] = strtolower($value);
 }

 }

The convention isn't changed so much: the only difference is that the method name
now starts with set and not get. It's all about getters and setters, my friend.

Another real common use of mutators is when the application stores the user's
password. A mutator can be used to hash the chosen password and the result is
then stored.

 <?php // User.php

 namespace App;

 class User extends Model {

 public function setPasswordAttribute($value)
 {
 $this->attributes['password'] = \Hash::make($value);
 }

 }

The Most Important Element – the Model!

[72]

Descending in the code
In the previous text, we analyzed many aspects of the Eloquent model. If you think
about your path, in a few pages you learned everything you needed to do many
operations with your data. Also, you saw many interesting ways to add behaviors
(from accessors and mutators to model observers) in order to improve your code
usability, readability, and maintainability.

In this section you are going to read, I will go through the Model class and analyze it
a little deeper than the usual. Nothing so advanced, so don't worry: I will just use the
class code to show you what you can do with your models.

Take it as a list of useful tips and tricks.

A big file
At the moment I am writing this chapter, the Model class under Illuminate\
Database\Eloquent counts 3361 lines of code, which is a big class with many
methods and features. However, this length is acceptable considering that we can
do the same thing in many different ways (just think about the save() method, the
::create() method, and the possibility to specify an associative array in the model
constructor: three ways to insert a new record).

In the first part of the class you can see all the properties we saw before, set to their
default values.

 ...

 protected $fillable = array();

 ...

 protected $guarded = array('*');

 ...

 protected $casts = array();

 ...

Yes, by default every attribute is guarded. A total blacklist for maximum security!

Chapter 3

[73]

Quick conversion to array or JSON
Do you remember at the beginning of this chapter what I told you about the
automatic conversion to JSON of your model attributes? If you take a look at the
code into the model you will see two methods: toArray and toJson. These two
methods are the ones that make the magic happen.

 // from the Illuminate\Database\Eloquent\Model class

 ...

 /**
 * Convert the model instance to an array.
 *
 * @return array
 */
 public function toArray()
 {
 $attributes = $this->attributesToArray();

 return array_merge($attributes, $this->relationsToArray());
 }

 ...

 /**
 * Convert the model instance to JSON.
 *
 * @param int $options
 * @return string
 */
 public function toJson($options = 0)
 {
 return json_encode($this->toArray(), $options);
 }

You can also see that the second method uses the first. If you don't
fear big files, I suggest you to take a deeper look at all the methods in
this class. You will see some awesome examples of code reusing and
function writing. In this chapter, we are just scratching the surface.

The Most Important Element – the Model!

[74]

You can convert both single models and model collections to arrays or JSON:

 return \App\Book::all()->toJson();

 // or ...

 return \App\Book::where('title', 'LIKE',
 'My%')->get()->toArray();

 // or

 return \App\Book::find(1)->toJson();

Obviously, for security reasons, you can choose to mark some specific fields
as hidden. They will not be shown when the record is converted to array
or JSON.

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 protected $hidden = ['password', 'credit_card_number'];

 }

In this case, with hidden, we specified a blacklist. You can also define a whitelist
with the visible property.

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 protected $visible = ['first_name', 'last_name'];

 }

Chapter 3

[75]

Imaginary attributes
Using accessors and a specific property of the model, appends, you can create some
attributes even if they don't exist as table columns.

For example purposes, let's assume that we want to create a complete_name
attribute, made with the two attributes first_name and last_name.

First of all, let's create the appropriate accessor in the model:

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 public function getCompleteNameAttribute()
 {
 return $this->attributes['first_name'].
 ' ' . $this->attributes['last_name'];
 }

 }

Then as the last step, we can include it in the appends array property.

 <?php

 namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 protected $appends = ['complete_name'];

 public function getCompleteNameAttribute()
 {
 return $this->attributes['first_name'].
 ' ' . $this->attributes['last_name'];
 }

 }

The Most Important Element – the Model!

[76]

Nothing else!

Now we can use our attribute like this:

 echo $user->complete_name;
 // outputs: Francesco Malatesta

Every attribute that you create with the appends array respects the
rules you specify eventually in the visible and hidden arrays.

Route model binding
Another little cool shortcut is model binding. In a few words, it lets you link a
certain route parameter to an instance of a defined model.

Let's test it: first of all, go to RouteServiceProvider in app/Providers folder.
Now follow these steps:

1. Add this line to the boot method:
 public function boot(Router $router)
 {
 parent::boot($router);

 $router->model('book', 'App\Book');
 }

2. Then go to your routes file and create a new route that uses this parameter:
 Route::get('books/{book}', function(App\Book $book)
 {
 return $book->title;
 });

3. So, calling the books/1 URL will output something like this:

 My First Book!

What happened? Laravel resolved and automatically instantiated in the $book
variable the desired object, using the given parameter (1) as the search term based
on the primary ID. Then, the instance was used to output the title.

Chapter 3

[77]

It's a little trick but sometimes it could be useful.

You can also customize the resolution logic: here's another example using the e-mail
address instead.

 Route::bind('user', function($value)
 {
 return User::where('email', '=', $value)->first();
 });

If the record with the specified primary ID doesn't exist, the application will return a
404 not found error. Obviously, you can change this behavior by specifying a third
parameter for the model() binding.

 Route::model('user', 'User', function()
 {
 throw new MyCustomNotFoundHttpException;
 });

Records chunking for memory optimization
Sometimes, you will need to process thousand and thousand of records. You know
that those operations are very heavy for your RAM, but Eloquent has a useful
method to chunk query results in blocks to optimize your load.

 \App\Book::chunk(200, function($books)
 {
 foreach ($books as $book)
 {
 // heavy operations on the book here...
 }
 });

The first parameter defines the size of the block you want to use. In this case,
we will load 200 results, process them, unload them, and repeat the same thing
with the next 200.

The second parameter is a closure that defines what to do with that chunk: the books
closure parameter is the returned collection of records.

The Most Important Element – the Model!

[78]

Summary
Hey, we made it again! This first overview of Eloquent is completed and now you
are able to make your first experiments on your own! Well actually you are able
to do many experiments, not just the basics. We learned all about the CRUD, mass
assignment, and many other interesting things.

If you feel overwhelmed by all this information, don't worry. Take your time to do
many tests and get familiarized with all the mechanisms, including the conventions
you found on your road. We are only at the third chapter!

In the next chapter, we will go deeper in one of the most amazing aspects of
Eloquent: relations. You will experience the power of Eloquent and how it handles
every kind of relationship between models, from the one-to-one to many-to-many,
in all its beauty.

Go, go, go, hero!

[79]

Exploring the World of
Relationships

United (and related) we stand, divided we fall.

In a real-world context, everything is connected; for example, a car has an owner,
a book has an author (or maybe more than one), or an e-commerce order is related
to one or more products that a customer (another relation!) has ordered.

Everything, actually, is related!

There are no differences in the application development world; usually, you create
software to solve a real-world problem. The real world is made from related things,
so you will probably have to define many relationships between your entities.

However, let's be clear: I am not saying anything new. Just go to Wikipedia and
search for entity-relationship model.

Usually, in your school books, you can find three fundamental types of relationships:

• One-to-one: This is used to relate a single entity with another single entity
(for example, a person and an identity document)

• One-to-many: This is used to define a connection between an entity with
more entities of the same type (for example, all the books of the same author)

• Many-to-many: This is used to relate multiple entities with many other
entities (for example, a book can be a part of more than one category, and one
category can include more than one book)

Exploring the World of Relationships

[80]

Of course, web development makes no exceptions. Eloquent makes no exceptions.

Following the convention used in what you have seen until now, Eloquent has a great
way to deal with relationships, the methods used to define them for your models,
and the techniques you can adopt to work with them.

So, let's explore what we are going to do in this chapter.

First of all, we will deal with the basic relationship types we just saw. How does
Eloquent handle them? You will discover the beauty of powerful methods such
as hasMany or belongsTo. This time, there are no more snippets; we will follow
the creation of our library management tool classes, defining every entity and
every relationship.

After the basics, you will discover how to work with these relationships: how to
query and use them in a comfortable and clean way. Also, we will see how to insert
and delete related models in your database, or update the existing models.

Sometimes, working with many-to-many relationships will mean storing some data
specific to that relationship. Eloquent has a very useful property named pivot that
you can use to query the desired pivot table.

So, many things to look at this time! However, it is not over yet! Eloquent offers two
other relationships that you can use: the has many through and polymorphic many to
many relationships.

Alright, enough chit-chat! I am not going to spoil anything now. Follow the chapter,
and you will fall in love with it.

Obviously, I will show you a real-world example for every concept. Come on, hero!

• The trinity: one to one, one to many, and many to many
• Querying-related models
• Eager loading (and the N + 1 problem)
• Inserting and updating related models
• Accessing distant relationships
• More power! Polymorphic relationships

Chapter 4

[81]

The trinity – one to one, one to many,
many to many
As I mentioned earlier, we will start from the basics. So, the first thing we will see is
how you can define relationships between entities in Eloquent. This is really simple,
and usually you will just have to add a single line of code for every relationship.

One to one
Our library is very concerned about tracking people who borrow books. For this
reason, every new user has to give to the library some identity document data.

Now, every user has a single identity document, and every document is absolutely
unique. If you think about it, this is a perfect one-to-one relationship. When you
build your database, the most followed rule tells you that you have to add the
necessary columns in the first table. In this specific example, we would add columns
to the user table.

However, someone could say "yes, but this is a completely different entity!"

Also, we could have to store many details about the identity document of every
user: number, type, due date, city, and so on.

In this case, you would add four or five columns to an existing table.
Many people don't like this solution, so imagine that you have the User and
IdentityDocument models.

Here's our default User model:

 <?php namespace App;

 use Illuminate\Auth\Authenticatable;
 use Illuminate\Database\Eloquent\Model;
 use Illuminate\Auth\Passwords\CanResetPassword;
 use Illuminate\Contracts\Auth\Authenticatable as
 AuthenticatableContract;
 use Illuminate\Contracts\Auth\CanResetPassword as
 CanResetPasswordContract;

 class User extends Model implements AuthenticatableContract,
 CanResetPasswordContract {

 use Authenticatable, CanResetPassword;

Exploring the World of Relationships

[82]

 /**
 * The database table used by the model.
 *
 * @var string
 */
 protected $table = 'users';

 /**
 * The attributes that are mass assignable.
 *
 * @var array
 */
 protected $fillable = ['name', 'email', 'password'];

 /**
 * The attributes excluded from the model's JSON form.
 *
 * @var array
 */
 protected $hidden = ['password', 'remember_token'];

 }

The following is our IdentityDocument model:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class IdentityDocument extends Model {

 //

 }

Now, let's see how to define the connection between them. For one-to-one
relationships, the methods used are hasOne() and belongsTo(). The hasOne()
method is used in the following way:

 $this->hasOne('App\IdentityDocument');

Also, the belongsTo() method is used as follows:

 $this->belongsTo('App\User');

Chapter 4

[83]

The syntax makes sense, right? A user has a document, and a document belongs to
a certain user! I know what you are thinking: you can't just place this method call
wherever you want in the class.

In fact, you must define a method that returns that method call like this:

 public function identityDocument()
 {
 return $this->hasOne('App\IdentityDocument');
 }

Similarly, belongsTo() must be defined as follows:

 public function user()
 {
 return $this->belongsTo(' App\User');
 }

So, the final model's code will be like this:

 <?php namespace App;

 use Illuminate\Auth\Authenticatable;
 use Illuminate\Database\Eloquent\Model;
 use Illuminate\Auth\Passwords\CanResetPassword;
 use Illuminate\Contracts\Auth\Authenticatable as
 AuthenticatableContract;
 use Illuminate\Contracts\Auth\CanResetPassword as
 CanResetPasswordContract;

 class User extends Model implements AuthenticatableContract,
 CanResetPasswordContract {

 use Authenticatable, CanResetPassword;

 /**
 * The database table used by the model.
 *
 * @var string
 */
 protected $table = 'users';

 /**

Exploring the World of Relationships

[84]

 * The attributes that are mass assignable.
 *
 * @var array
 */
 protected $fillable = ['name', 'email', 'password'];

 /**
 * The attributes excluded from the model's JSON form.
 *
 * @var array
 */
 protected $hidden = ['password', 'remember_token'];

 public function identityDocument()
 {
 return $this->hasOne(' App\IdentityDocument');
 }

 }

The code for the User class will be:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class IdentityDocument extends Model {

 public function user()
 {
 return $this->belongsTo(' App\User');
 }

 }

Et voilà!

What exactly happened?
At a database level, we created an identitydocuments table with some data
columns and a user_id external key. This external key is important because it is
used automatically by Eloquent to resolve the relationship.

Chapter 4

[85]

If you want, you can specify a different foreign key as a second parameter in both
methods:

 $this->hasOne('App\IdentityDocument',
 'another_user_external_id');

Otherwise, you can use this:

 $this->belongsTo(' App\User', 'another_user_external_id');

The field we specify is the same. Of course, the hasOne method (the User model) will
see it as an external key, and the belongsTo method (the IdentityDocument model)
will see it as a local one.

There's also a third parameter that you can use in both methods. In hasOne(),
it is used to specify the local key (the default is the id field). In the belongsTo()
method, it is used to define the parent key on the parent table (again, the default
is the id field).

Let's take another example with the same models. Imagine that we have our
IdentityDocuments table with a primary key named documentidentifier.
Also, we need to follow a certain standard, and we can't use user_id as the
external foreign key name. We must use documentowner_id.

No problem. First, you will define your hasOne like this:

 $this->hasOne('App\IdentityDocument', 'owner_id');

We don't need to define the third argument, as our users primary key is id.

Then, you define belongsTo:

 $this->belongsTo('App\IdentityDocument',
 'documentidentifier', 'owner_id');

Now you're done! Note that this concept is applied in the same way for other
relationship methods that we will see.

One to many
This time it's easier than before: every book has an author, right? Sometimes, a
book may have more than one author, but let's assume a basic case. The second
relationship type we will analyze here is one to many. Every author can have more
than one book. Let's consider the involved models: Author and Book.

Exploring the World of Relationships

[86]

Here's the Author class:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Author extends Model {

 //

 }

The Book class is as follows:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 //

 }

These are nothing more than simple Eloquent models. Now, in order to define a
one-to-many relationship, we must use the hasMany() method.

So, the Author class will look like this:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Author extends Model {

 public function books()
 {
 return $this->hasMany('App\Book');
 }

 }

Chapter 4

[87]

You can then use the belongsTo() method, as before, to define the inverse of this
relationship:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 public function author()
 {
 return $this->belongsTo('App\Author');
 }

 }

So, we are done! We used belongsTo() again as the concept of belonging is
exactly the same; no differences.

At a database structure level, I just added an external author_id key in the
books table.

So yeah, finished! I mention it in a note before, but I will repeat: remember that
you can change your foreign key just by specifying it as a second parameter in the
hasMany() and belongsTo() methods.

Many to many
Let's imagine a good example for many-to-many relationships. Well, the
books/categories relationship is perfect. In fact, imagine Twenty Thousand Leagues
Under the Sea, Jules Verne.

It is not only an adventure novel but also a classic. So, you will need to classify
it under two separate categories: Classics and Adventure. Our library could also
contain Journey to the Center of the Earth, another classic, but also an other adventure
novel. Same thing!

As you can see, this time a many-to-many relationship is absolutely necessary.
Let's discover how Eloquent handles many-to-many relationships and how you
can define them on models.

Exploring the World of Relationships

[88]

Here's the code for our Book model:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 public function author()
 {
 return $this->belongsTo('App\Author');
 }

 }

The code for Category model is:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Category extends Model {

 //

 }

This time, we don't have any directions or a possible inverse of a relationship.

Specifically, there are many books for many categories. So, the only method you
need to use in this case is belongsToMany(). Use the method like this:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 public function author()
 {
 return $this->belongsTo('App\Author');
 }

 public function categories()
 {

Chapter 4

[89]

 return $this->belongsToMany('App\Category');
 }

 }

The other method is used as follows:

 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Category extends Model {

 public function books()
 {
 return $this->belongsToMany('App\Book');
 }

 }

Nothing else!

Let's see what we need at a database level to handle this relation. As you can easily
imagine, you will have to work with a pivot table in this case.

So, you will need to specify an appropriate extra table in your migration file, using
the up() method, as follows:

 Schema::create('book_category', function(Blueprint $table)
 {
 $this->increments('id');

 $this->integer('book_id')->unsigned();
 $this->integer('category_id')->unsigned();

 $this->text('notes');

 $this->timestamps();
 });

You also have some conventions to follow. These are given here:

• The table name is comprised of the name of the entities, which is singular,
separated by an underscore

• The table will contain two columns named after the interested entities
(author_id and book_id)

Exploring the World of Relationships

[90]

When you specify a relation, remember to use return before the
appropriate method call. I know that's a little obvious, but very often
newbies forget it.
It's really, really important that you follow the defined conventions.
Laravel and Eloquent can change your workflow timeline significantly,
but to get the result, you must follow conventions. The sooner you do
it, the better you will feel.

A question of inverses
A little extra before we go forward. We just saw how to define a relationship and its
inverse. However, what are the consequences you would stumble upon if you don't
define an inverse? Or what if I define an inverse and not the inverse of the inverse?

Nothing special, actually!

The best rule is to define the relationship you need. Let's imagine a situation like this:
in your software, you will need to know the category of a book, but not all the books
in a certain category.

It is a strange situation, but this happens. In this case, you can just define the
categories() relationship in Book and nothing else.

Vice versa, if in your application you will just need to get a list of books from the
category and nothing else, you will define only the books() relationship in the
Category model. That's all.

Done! The three basic relationship types are covered! You don't have to do anything
more; actually, Eloquent handles everything automatically, so all you have to do is
to write your code, use models, and raise your queries.

Oh, about queries...

Querying-related models
Now that you have learned how to define your relationships, I think you are ready to
learn how to query them. Let's start with a very basic example.

Chapter 4

[91]

Let's suppose that we are searching for the document number of a specific user.
We will use the User and IdentityDocument entities we just saw. For the purpose
of this example, imagine that you have a table identitydocuments with the
following columns:

• Number: This indicates the document number
• Type: This indicates the document type
• due_date: This indicates the due date of the document
• City: This indicates the city where the document was released

Here's the code to get the document identity number, starting from a User instance:

 $user = \App\User::where('first_name', '=',
 'Francesco')->where('last_name', '=', 'Malatesta')->first();

 $identityDocumentNumber = $user->identityDocument->number;

If you echo $identityDocumentNumber, you will read the desired information.
Nice, huh?

Well, this is the way Laravel and Eloquent deal with querying your relationships.
Once you have defined it, all you have to do is to access it as a simple property
or a method.

All the other queries will be executed automatically by Laravel. In fact, follow
these simple instructions:

 $user = \App\User::where('first_name', '=',
 'Francesco')->where('last_name', '=', 'Malatesta')->first();

 $identityDocumentNumber = $user->identityDocument->number;

You just executed these queries:

 // the user Francesco Malatesta as an ID = 1...
 select * from users where first_name = 'Francesco' AND
 last_name = 'Malatesta';

 select * from identitydocuments where user_id = 1

Now put the result in to the $identityDocumentNumber. It is quite obvious for a
one-to-one relationship; however, the same applies for a one-to-many relationship.

Exploring the World of Relationships

[92]

Let's consider another example right now: good old Jules will be a perfect fit.
Let's suppose that we want to get a list of every Jules Verne books we have,
and the code is as follows:

 $author = \App\Author::where('first_name', '=', 'Jules')->where(
 'last_name', '=', 'Verne')->first();

 foreach($author->books as $book)
 {
 echo $book->title .
;
 }

 // outputs:
 //
 // Journey to the Center of the Earth
 // Twenty Thousand Leagues Under the Sea
 // Around the World in Eighty Days
 // Michel Strogoff

As I told you before, you can have access to your relationship using
a simple attribute or a method call. What's the difference? Well, with
the method call, you can do some filtering, and everything you saw
before, in order to get the desired result. In fact, you can raise a query
on a relationship.

Imagine that we want to get all the books with a the in the title. Here's the code:

 $author = \App\Author::where('first_name', '=',
 'Jules')->where('last_name', '=', 'Verne')->first();

 $theBooks = $author->books()->where('title', 'LIKE',
 '%the%')->get();

 foreach($theBooks as $book)
 {
 echo $book->title .
;
 }

 // outputs:
 //
 // Journey to the Center of the Earth
 // Twenty Thousand Leagues Under the Sea
 // Around the World in Eighty Days

Cool, right? It's not over yet, this is just scratching the surface!

Chapter 4

[93]

Accessing a pivot table
Working with many-to-many relationships, is not always about just defining a
couple of external keys. You can choose to put extra data in to your pivot table in
order to store some information for a specific connection between entities.

You already know how to create a pivot table, but how to access it? It's nothing
complex: all you have to do is to use the pivot attribute of your relationship.
Let's take an example using the previous books/categories relationship we created.

1. First, you must define which attribute you want to take from the table,
modifying the belongsToMany() call in your model:
 return $this->belongsToMany('App\Category')
 ->withPivot('created_at', 'notes');

2. Then your code should be as follows:

 $book = App\Book::find(23);

 foreach($book->categories as $category)
 {
 echo 'Association Date: ' .
 $category->pivot->created_at;
 echo 'Association Notes: ' . $category->pivot->notes;
 }

In this little example, we just have printed all the dates that we attached a specific
category to the book with id = 23. As an extra, we also printed some extra notes.
This means that on the pivot table, we have the created_at and notes fields.

As a shortcut, you can also use:

 return $this->belongsToMany('App\Category')->withTimestamps();

This is used if you just want to import timestamps data from the pivot table.

Querying a relationship
Eloquent allows you to query a relationship. In other words, you can get some
results based on the existence of a certain relationship. Imagine that we want to
get all the authors who have at least one book in the database.

With Eloquent, we can do something like this:

 $authorsWithABook = \App\Author::has('books')->get();

Exploring the World of Relationships

[94]

In this case, you have to use the has method, specifying the name of the desired
method for the relationship you want to check. The author will be added to
$authorsWithABook only if at least one related book is be found.

If you don't like this Boolean approach, don't worry; let's see how to find every
author with at least five books in the database.

 $authorsWithAtLeastFiveBooks = \App\Author::has('books',
 '>=', 5)->get();

Yeah, you can specify the second and third arguments as operator and comparison
term, respectively, for this count check.

I know, I know, cool, but not enough. Alright, what about getting all the authors
with at least one book dated 1864?

Here we go, this time with the whereHas method:

 $authorsWithABookFromThe1864 = \App\Author::whereHas('books',
 function($q)
 {
 $q->where('year', '=', 1864);

 })->get();

As you can see, you can do it in a quite elegant way. The first parameter specified is
the name of the relationship you want to query. The second argument is a closure
that takes a $q query parameter, which you can use to define conditions.

The same concept you just saw here for a one-to-many relationship is
also used for a many-to-many relationship.

Eager loading (and the N + 1 problem)
Every powerful tool must be used wisely. Relationships in Eloquent are no exception
to the rule. Actually, one of the most common problems in using Eloquent is the
N + 1 problem. To explain it, I will use an example as usual.

Let's suppose that I am showing some data for the first 100 books. Starting with this
data, I also want to print the author name for every single book.

Chapter 4

[95]

Using what we've learned before now, here's the code:

 $books = \App\Book::take(100)->get();

 foreach($books as $book)
 {
 $author = $book->author;

 echo $author->first_name . ' ' . $author->last_name;
 }

Even if the syntax is simple, under the hood, Eloquent is performing 101 queries!
The first one is to get the list of the 100 books, then a query for every book to get
the author. This is not exactly performance friendly, right?

Don't worry, there is a solution!

Basic eager loading
Eager loading solves your problem. This time using the with() method of the Book
model, like this:

 $books = \App\Book::with('author')->take(100)->get();

 foreach($books as $book)
 {
 $author = $book->author;

 echo $author->first_name . ' ' . $author->last_name;
 }

Now, the number of executed queries will precipitate down to two, using a
where in!

 select * from books;
 select * from authors where id in (1, 2, 3, ...);

If you want, you can also include multiple relationships in your final result.
Let's also include categories data for every book!

 $books = \App\Book::with('author',
 'categories')->take(100)->get();

 foreach($books as $book)
 {

Exploring the World of Relationships

[96]

 $author = $book->author;

 echo 'Author: ' . $author->first_name . ' ' .
 $author->last_name;

 echo 'Categories:';

 foreach($book->categories as $category)
 {
 echo $category->name . ', ';
 }
 }

As if it's not enough, you can also include data from nested relationships.

Let's imagine that you are getting a list of categories in your application. Then, you
want to include book data for every category, and for every related book you want to
include the author's data.

All you have to do is this:

 $categories = \App\Categories::with('books.author')->get();

 foreach($categories as $category)
 {
 echo $category->name;

 foreach($category->books as $book)
 {
 echo 'Title: ' . $book->title;
 echo 'Author: ' . $book->author->first_name .
 ' ' . $book->author->last_name;
 }
 }

Advanced eager loading
If you want better control over your eager loading, you can define some constraints
or conditions. Let's assume that you are getting a list of authors. From this list, you
want to get every published book, from the oldest to the most recent.

Chapter 4

[97]

You can do it like this:

 $authors = \App\Author::with(['books' => function($query)
 {
 $query->orderBy('year', 'asc');

 }])->get();

All you have to do is to specify the desired eager-loaded relationships as elements of
an associative array with this syntax:

 ['relationship' => function($query){

 // conditions here, using the $query object

 }]

Lazy eager loading
Sometimes you will use eager loading, but not every time. Sometimes you will
need it, sometimes not.

If you want, you can manually eager load a specific relationship in the next moment.

How? It can be done with the load() method:

 $books = Book::all();

 // some operations here...

 $books->load('author', 'categories');

The syntax is really similar to what you saw before; all you have to do is to specify
the desired relationships as arguments.

Of course, you can also define conditions with the following:

 $books->load(['categories' => function($query)
 {
 $query->orderBy('name', 'asc');

 }]);

Exploring the World of Relationships

[98]

The same way, nothing less, nothing more!

Remember that eager loading is a great solution to many performance
issues. Especially in my initial experiments, it helped me a lot by
letting me reach a lower number of queries. Just to make an example,
on the Laravel-Italia forum, I showed a list of threads, with some
replies, information, and thread author data, with just three queries.

Inserting and updating related models
Until now, you have learned how to define relationships and query them, in order
to get data from related models. However, you can also insert and update related
models in an easy way.

Let's pick a really basic example to get started: imagine that we are adding a new
book (Michael Strogoff, Jules Verne). We have to specify some details as follows:

 $book = new Book;

 $book->title = 'Michael Strogoff';

Then, we specify the correct author ID:

 $author = Author::where('first_name', '=',
 'Jules')->where('last_name', '=', 'Verne')->first();

 $book = new Book;

 $book->title = 'Michael Strogoff';
 // other data...

 $book->author_id = $author->id;

 // and finally...
 $book->save();

The save() and associate() methods
Let's be clear; this works really well. However, it is not the best way you can
do it. In fact, with Eloquent, you can work with related models using some other
specific methods.

Chapter 4

[99]

Let's rewrite this example using the method save() on a relationship. Also, we will
use an associative array as a constructor argument in order to assign attributes.

 $author = Author::where('first_name', '=',
 'Jules')->where('last_name', '=', 'Verne')->first();

 $author->books->save(new Book([
 'title' => 'Michael Strogoff',
 // other attributes...
]));

Done! It only took a couple of instructions. The save() method will automatically set
the author_id key for the book you just passed as a parameter.

However, this is not just a time-saving trick; if you read the code carefully, you will
note that we are actually creating very readable code. Instead of setting external
keys, treating the relationship in a more physical way, we are saving the book as an
element of the collection of books for a certain author. Quite different!

You can also do the same thing with arrays of objects, using the saveMany() method:

 $author = Author::where('first_name', '=',
 'Jules')->where('last_name', '=', 'Verne')->first();

 $author->books->saveMany([
 new Book(['title' => 'Michael Strogoff']),
 new Book(['title' => 'The Mysterious Island']),
 new Book(['title' => 'Off on a Comet'])
]);

As mentioned before, the saveMany method will set the external author_id key for
every Book instance passed in the array. You can also update an existing relationship,
changing its association with another model.

In this case, you must use the associate() method. Take a look at this example:

 $wrongAuthor = Author::where('first_name', '=',
 'Jules')->where('last_name', '=', 'Verne')->first();

 $wrongAuthor->books->save(new Book([
 'title' => 'The Alchemist'
]));

 // oops! wrong author!

Exploring the World of Relationships

[100]

 $book = Book::where('title', '=', 'The Alchemist')->first();
 $rightAuthor = Author::where('first_name', '=',
 'Paulo')->where('last_name', '=', 'Coelho')->first();

 // done!
 $rightAuthor->books->associate($book);

What happened? In the first part of the example, I assigned The Alchemist to Jules
Verne. After one year of penitence in the desert, I came back to get the right author
(by using the $rightAuthor variable), and then using the associate() method on
the books relationship.

The first passed parameter is the model instance you want to work with.

So, the rule is quite simple: use the save() method when inserting
a new record or the associate() method in order to update an
existing record.

Remember that The Alchemist was not written by Jules Verne but by Paulo Coelho!

What about many to many?
Everything we saw is great for one-to-one or one-to-many relationships. However,
what about many-to-many relationships? The mechanism, this time, is a little bit
different; not in terms of complexity, but in terms of syntax, more than anything else.
However, let's use an example as we did before.

• We have a few books: The Alchemist and Journey to the Center of the Earth.
• We also have some categories: Science Fiction, Adventure, and Classic.

As I mentioned in the first part of this chapter, this is a many-to-many relationship.
What can we do to register a relationship between The Alchemist and Adventure, or
Journey to the Center of the Earth and Classic?

In order to access our data in separate pivot tables, we will need other dedicated
methods. I know that it seems stupid and boring, but use your database management
tool to see what happens in your database when you interact with your data. It's
always a good idea to familiarize with the process.

Chapter 4

[101]

However, the first method you will use is attach():

 $book = new Book();

 $book->title = "The Alchemist";
 // other attributes...

 $book->save();

 // after save() call, an id is created.

 $category = new Category();

 $category->name = "Adventure";

 $category->save();

 // and now...

 $category->books->attach($book->id);

As you can easily see, the attach() method is another one you can call on a
relationship. Of course, only on a many-to-many one! It takes a single parameter
in this case: the primary ID of the book I want to associate with the category.

You can also add an associative array as a second parameter if you are storing some
extra data in your pivot table:

 $category = Category::where('name', '=', 'Opera')->first();

 $book = Book::where('title', '=', 'Journey to the Center of
 the Earth')->first();

 $category->books->attach(
 $book->id,
 ['notes' => "Well, I'm not so sure about this..."]
);

The associative array follows the attribute_name => attribute_value format,
as usual.

Exploring the World of Relationships

[102]

In the same way you attach, you can detach. If you want to remove a many-to-many
relationship between two model instances, use the detach() method, as follows:

 $category = Category::where('name', '=', 'Opera')->first();

 $book = Book::where('title', '=', 'Journey to the Center of
 the Earth')->first();

 // oh, come on...
 $category->books->detach($book->id);

So, you are done!

Also, both attach() and detach() methods support an array as a parameter
instead of a simple integer.

 $category->books->attach(
 [4, 8, 15, 17, 22, 42]
);

 $category->books->detach([17, 22]);

 $category->books->attach([16, 23 => ['notes' =>
 'be careful next time...']]);

The sync() method
This is a really cool way to deal with many-to-many relationships.
However, attaching and detaching things could be a little boring sometimes.
Let's try the sync() method:

 $category->books->sync(
 [4, 8, 15, 17, 22, 42]
);

 $category->books->sync(
 [4, 8, 15, 16, 23, 42]
);

Chapter 4

[103]

Confused? Let me explain everything. The sync method automatically
synchronizes relationship data, taking an array of IDs. Element after element,
it checks if the relationship was previously created or not, and sets (or unsets)
them when necessary. Let's imagine that the pivot table book_category is empty;
here's the first instruction:

 $category->books->sync(
 [4, 8, 15, 17, 22, 42]
);

This instruction will create a connection between the chosen category and the books
with the IDs 4, 8, 15, 17, 22, and 42. However, here's the second method call:

 $category->books->sync(
 [4, 8, 15, 16, 23, 42]
);

It checks everything, and calculates a positive difference and a negative one. Books
17 and 22 are no longer in the array. The relationship will be automatically detached.
Instead, books 16 and 23 will be added with attach, another really cool utility method
that saves you a lot of time!

You can obviously add data to the pivot table with the same method used earlier:

 $category->books->sync(
 [4, 8, 15, 16, 23, 42 => ['notes' =>
 'We either live together.... or die alone.']]
);

Accessing distant relationships
Another really interesting Eloquent feature is the possibility to define
(and then access) a distant relation, using the hasManyThrough() method.

What? I see you are a little confused. No problem: let's take another example,
which is a little different from our actual context.

Imagine that you are writing an application for some kind of research management
for a research team. In this software, every user will be able to create a new research
entity, and then add some sections to that research something like this:

• A User entity that has a one-to-many relationship with a Research entity
• The Research entity has a one-to-many relationship with a Section entity

Exploring the World of Relationships

[104]

Good. First of all, for models, you could write something like this:

 // file: app/User.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 public function researches()
 {
 return $this->hasMany('App\Research');
 }

 }

 // file: app/Research.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Research extends Model {

 public function user()
 {
 return $this->belongsTo('App\User');
 }

 public function sections()
 {
 return $this->hasMany('App\Section');
 }

 }

 // file: app/Section.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Section extends Model {

 public function research()
 {

Chapter 4

[105]

 return $this->belongsTo('App\Research');
 }

 }

As a basic setup, it could work. Now, what if we want access to every section added
by a certain user? Probably, you would use something like this:

 // getting $author with id = 1...
 $author = Author::find(1);

 // getting all $author researches...
 $researches = $author->researches;

 $allSections = [];

 // iterating to get all sections
 foreach($researches as $research)
 {
 $allSections[] = $research->sections;
 }

The $allSections array would contain every section added by the user. With
Eloquent, if you want, you can create a shortcut using the hasManyThrough()
method I mentioned earlier.

All you have to do is to put it in the User model as follows:

 // file: app/User.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class User extends Model {

 public function researches()
 {
 return $this->hasMany('App\Research');
 }

 public function sections()
 {
 return $this->hasManyThrough('App\Section', 'App\Research');
 }

 }

Exploring the World of Relationships

[106]

If you want, you can specify external keys (for the current and middle entities) as the
third and fourth parameters:

 return $this->hasManyThrough('App\Section',
 'App\Research', 'user_id', 'research_id');

In some such specific cases, it is a very useful shortcut. Enjoy it!

More power – polymorphic relationships
Probably, you are thinking that Eloquent is cool and very powerful.

Well, yes, it is. However, sometimes, hasMany() or belongsToMany() isn't enough.
In some situations during your development flow, you will have to deal with more
complex relationships that could involve more than two entities.

So, as a last part of this chapter, I will talk about polymorphic relationships.
As usual, even if they aren't complex to learn, I will cover them with many
detailed examples, in order to let you fully understand the entire concept.

Let's start from the simple polymorphic relationship.

A simple polymorphic relationship
A simple polymorphic relationship can be used when you have an entity that can
belong to either one entity or to another.

So, here's our first example. Imagine that you are creating an e-commerce
application. You will be able to upload some photos: either for a product,
a category, or a blog post.

This means that we will have, first of all, four separate entities:

• Photo
• Product
• Category
• Post

Now, let's prepare some code skeletons as follows:

 // file: app/Photo.php
 <?php namespace App;

Chapter 4

[107]

 use Illuminate\Database\Eloquent\Model;

 class Photo extends Model {

 //

 }

 // file: app/Product.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Product extends Model {

 //

 }

 // file: app/Category.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Category extends Model {

 //

 }

 // file: app/Post.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Post extends Model {

 //

 }

Exploring the World of Relationships

[108]

Now, you can define this polymorphic relationship using the morphTo() and
morphMany() methods.

• The morphTo() method is used by the class that is related to all the
other classes.

• The morphMany() method is called by the owner classes.

So, let's edit our models like this:

 // file: app/Photo.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Photo extends Model {

 public function imageable()
 {
 return $this->morphTo();
 }

 }

 // file: app/Product.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Product extends Model {

 public function photos()
 {
 return $this->morphMany('Photo', 'imageable');
 }

 }

 // file: app/Category.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

Chapter 4

[109]

 class Category extends Model {

 public function photos()
 {
 return $this->morphMany('Photo', 'imageable');
 }

 }

 // file: app/Post.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Post extends Model {

 public function photos()
 {
 return $this->morphMany('Photo', 'imageable');
 }

 }

Done! Wait, wait. What's that imageable that is used both as a name for the method
and as a string parameter? It is a name you can choose for yourself: however, take a
look at the table structure I have used, to understand.

 products
 id - integer
 name - string

 categories
 id - integer
 name - string

 posts
 id - integer
 name - string

 photos
 id - integer
 path - string
 imageable_id - integer
 imageable_type - string

Exploring the World of Relationships

[110]

The photos table has two special fields: imageable_id and imageable_type.
A simple external key, the only difference is that, for the elements in this photos
table, you can count owners of different types.

So, in imageable_id, you will put the owner ID and in imageable_type, the owner
class name!

If a photo belongs to a product, you will see Product in the imageable_type
column, then Category if the photo belongs to a category, and so on.

Obviously, working with this relationship is very simple. Here's an example:

 // getting a sample product...
 $product = App\Product::find(3);

 foreach($product->photos as $photo)
 {
 // working with photos here...
 }

This applies for every other entity!

 // getting a sample category
 $category = App\Category::find(42);

 foreach($category->photos as $photo)
 {
 // working with category photos here...
 }

Finally, you can also reverse things. If you have a photo and want to know who the
owner is, all you have to do is:

 $photo = App\Photo::find(23);

 // getting the owner...
 var_dump($photo->imageable);

No matter what the owner's class is, Eloquent will automatically resolve the instance
and return it to you. If the owner is a blog post, you'll get the blog post. Easy!

Chapter 4

[111]

A many-to-many polymorphic relationship
If a simple polymorphic relationship can be defined as a special one to many,
the many-to-many relationship finds equivalence in many-to-many polymorphic
relationships.

As you saw in the earlier text, it works exactly like a many-to-many relationship.
The only difference is that you can connect a certain entity with more entities.

For our example, this time, let's return to our library management system.
At the beginning of this chapter, you saw three main entities:

• Author
• Book
• Category

Between books and categories, there is a many-to-many relationship. A book can
belong to more than one category. Similarly, a category can include more than one
book. Now, imagine that you want to extend this concept to authors.

Let's pick good old Jules as a perfect example. He wrote adventure books,
so he could be easily classified as an adventure author.

The many-to-many polymorphic relationship is the best way to deal
with the situation. This time, you will have to use the morphMany() and
morphedByMany() methods:

 // file: app/Author.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Author extends Model {

 public function categories()
 {
 return $this->morphToMany('App\Category', 'categorizable');
 }

 }

 // file: app/Book.php
 <?php namespace App;

Exploring the World of Relationships

[112]

 use Illuminate\Database\Eloquent\Model;

 class Book extends Model {

 public function categories()
 {
 return $this->morphToMany('App\Category', 'categorizable');
 }

 }

 // file: app/Category.php
 <?php namespace App;

 use Illuminate\Database\Eloquent\Model;

 class Category extends Model {

 public function authors()
 {
 return $this->morphedByMany('App\Author', 'categorizable');
 }

 public function books()
 {
 return $this->morphedByMany('App\Book', 'categorizable');
 }

 }

Of course, as for every many-to-many relationship, you will need a pivot table
with a structure similar to the following:

 categorizables
 tag_id - integer
 categorizable_id - integer
 categorizable_type – string

Chapter 4

[113]

Pay maximum attention to names and conventions, as usual. The second
parameter of categorizable for the morphToMany() and morphedByMany()
methods is the same as you specify in the pivot table, for categorizable_id
and categorizable_type.

Also, the table name used is the plural for the term
(categorizable and categorizables).

After this setup, you are able to use the relationship in your code, as follows:

 // getting a sample author
 $author = App\Author::find(30);

 // accessing categories...
 var_dump($author->categories);

 // getting a sample book
 $book = App\Book::find(60);

 // accessing categories... in the same way!
 var_dump($book->categories);

While creating tables, you will need to add the specific _id and _type columns,
such as categorizable_id and categorizable_type.

In the Schema Builder, you can use the $table-
>morphs('categorizable'), if you want. It will
automatically add the columns you need, just specify
the -able name you desire.

Summary
Alright, I think that's enough. Well, actually that's all; time to rest!

You have learned everything related to relationships in Eloquent, and now you
can even build complex applications in no time. You know everything related to
Eloquent basics, so my suggestion is: take your time to recap everything, do some
tests, write good code, and enjoy models and relationships.

When ready, turn the page and dive into something more advanced!

[115]

Using Collections to
Enhance Results

Until now, I told you everything about models and how to create relationships
between them. I explained you how to query your data and relationships and
even to specify complex conditions and constraints. However, I have never told
you anything about what Eloquent's outputs are. Yes, sometimes, I mentioned an
array or just the word results. Don't worry; it wasn't wrong, but there is something
more under the hood.

Well, in this chapter, I will discuss collections. When retrieving your results from a
query (using, for instance, get() or all()), you are getting a collection. That's the
right term to use.

Basically, you can think of a collection as an array of results but with some extra
utility methods. In fact, when you use a collection, you are using an instance of
the Collection class under Illuminate\Database\Eloquent.

This class implements the AggregateIterator interface that lets you treat a
collection like an array. You can use collections to perform many operations,
sometimes complex operations as well. First of all, you will see how to perform
some basic research operations and checks with collections.

Then, we will see some results transformation methods. Do you remember, in
Chapter 3, The Most Important Element – the Model!, I had told you about the automatic
transformation in JSON of a model result? Great! It's one of these methods.

Using Collections to Enhance Results

[116]

Straight after, we will go a little deeper; after all, a collection is made up of elements.
We will work with these elements. With a collection, obviously, you can iterate
through its elements. There are some dedicated methods for iterations. Also, you
will learn how to filter a collection in an easy way, just as many things in Eloquent
are easy. Finally, we will talk about sorting operations on collections and how to
deal with them. So, nothing of this really is essential, but it will help you to better
understand how Eloquent works in every single way.

Are you ready? Here are the topics to cover:

• Basic collection operations
• Transforming collections
• Iterating and filtering
• Sorting

Basic collection operations
Let's start with some really basic methods. For a better understanding of what you
are going to do, I strongly suggest that you try on your project every single method from
the following list:

• The first is contains(). It returns true or false if a record with a certain ID is
included in the collection.
Here's an example:
 $books = \App\Book::all();

 if($books->contains(3))
 {
 return 'yeah, book 3 is here!';
 }

All you have to do, here, is to specify the ID as a parameter.

• As I told you earlier, you can use a collection as an array. So, if you want to
get the third element in a collection, you can use this:
 $book = $books[2];

• However, if you don't like this syntax for some reason, you can use get() in
an alternative way, like this:
 $book = $books->get(2);

Chapter 5

[117]

• With this powered syntax, you can also specify a default value if the desired
index doesn't exist:
 $book = $books->get(2, "Not Found!");

• Obviously, you can check the existence of a specific element, if you want,
with has():
 if($books->has(3))
 {
 $book = $books->get(3);
 }

• As the opposite of get(), you can add an element with a specific index
using put():
 $book = new Book;
 // other attributes assignment here...

 $books->put(2, $book);

As you may imagine, the first argument is the desired index, and the second
argument is the value.

• Another cool method is prepend(), which you can use to prepend an
element to a certain collection. Here's the syntax:
 $firstBook = new Book;
 // other attributes assignment here...

 $books->prepend($book);

• If you want to get an array with all the primary keys, you can use a
dedicated modelKeys() method!
 $books = \App\Book::all();

 $primaryKeys = $books->modelKeys();

It's not over yet; actually, there are many methods you can use for many
different things.

• An example is random(), which extracts a single random item from the
specified collection:
 $books = \App\Book::all();

 $randomBook = $books->random();

Using Collections to Enhance Results

[118]

• Also, you can use keys() or values() to get arrays for only keys or values,
respectively.
 $books = \App\Book::all();

 $keysArray = $books->keys();
 $valuesArray = $books->values();

• What? You want to treat your collection as a stack? No problem, pop() and
push() are here to help!
 // let's get the last item!
 $books = \App\Books::all();
 $lastBook = $books->pop();

 // lets' add a new item ad the end!
 $book = new Book;
 // other attributes assignment here...

 $books->push($book);

• Now, what about searching for an item in a collection using syntax similar to
the here() you called on models? Take a look at this:
 $books = \App\Book::all();

 $book = $books->where('title', 'Michael Strogoff');

Note that this method returns another category. This means that you can
use many chained calls of where(). Here's another example that gives a
better idea:

 $books = \App\Book::all();

 $book = $categories->where('year',
 1876)->where('page_count', 254);

• Let's close this first part of our chapter with perPage, which is a really
intuitive method that gets a certain number of items, and all you have
to do is to specify the page and number of items you want per page.

The syntax is something like this:
 $books = \App\Book::all();

 $secondPageBooks = $books->perPage(2, 10);

Chapter 5

[119]

With this simple call, you are getting 10 books, starting from the second page.
I think this is a great example of expressive syntax of methods that Eloquent
(and Laravel) offers.

If you want to know more about the Collection class and
what it offers, take a look at http://laravel.com/api/5.0/
Illuminate/Database/Eloquent/Collection.html or
look directly at the code in Illuminate\Database\Eloquent\
Collection and Illuminate\Support\Collection classes.

Transforming collections
Quite often, Eloquent automatically takes a collection to transform it into something
that you can output in a better way. For example, here is the code that I am using to
show a list of a magazine website's news categories:

 $categories = \App\Category::all();
 return $categories;

This is the corresponding output:

 [
 {
 id: 1,
 name: "Editorial",
 slug: "editorial",
 description: "Qui est quo asperiores aliquid vitae possimus.
 Dolor consequuntur similique voluptatem a laborum dolorem
 ea repellendus. Aspernatur ducimus quis dolorum consequatur
 vel nam at. Aut omnis rem laborum.",
 created_at: "2015-04-21 10:14:37",
 updated_at: "2015-04-21 10:14:37"
 },
 {
 id: 2,
 name: "Interview",
 slug: "interview",
 description: "Rerum deleniti rerum aliquid laudantium id
 non voluptatum. Aut quia distinctio consequatur velit natus
 inventore sunt iusto. Non totam quis quam sint et.",

http://laravel.com/api/5.0/Illuminate/Database/Eloquent/Collection.html
http://laravel.com/api/5.0/Illuminate/Database/Eloquent/Collection.html

Using Collections to Enhance Results

[120]

 created_at: "2015-04-21 10:14:37",
 updated_at: "2015-04-21 10:14:37"
 },
 {
 id: 3,
 name: "Reportage",
 slug: "reportage",
 description: "Adipisci et veritatis excepturi ullam
 explicabo. Eos dolore quas a vero. Optio voluptatem
 accusamus ex optio. Rerum rem quaerat qui maiores.",
 created_at: "2015-04-21 10:14:37",
 updated_at: "2015-04-21 10:14:37"
 }
]

However, now consider the following code:

 $categories = \App\Category::all();
 return $categories;

Then, let's change the code to this:

$categories = \App\Category::all();
dd($categories);

This is what happens:

 Collection {#152
 #items: array:3 [
 0 => Category {#155
 #connection: null
 #table: null
 #primaryKey: "id"
 #perPage: 15
 +incrementing: true
 +timestamps: true
 #attributes: array:6 [
 "id" => 1
 "name" => "News"
 "slug" => "news"
 "description" => "Qui est quo asperiores aliquid vitae
 possimus. Dolor consequuntur similique voluptatem a
 laborum dolorem ea repellendus. Aspernatur ducimus
 quis dolorum consequatur vel nam at. Aut omnis rem
 laborum."

Chapter 5

[121]

 "created_at" => "2015-04-21 10:14:37"
 "updated_at" => "2015-04-21 10:14:37"
]
 #original: array:6 [
 "id" => 1
 "name" => "News"
 "slug" => "news"
 "description" => "Qui est quo asperiores aliquid vitae
 possimus. Dolor consequuntur similique voluptatem a
 laborum dolorem ea repellendus. Aspernatur ducimus quis
 dolorum consequatur vel nam at. Aut omnis rem laborum."
 "created_at" => "2015-04-21 10:14:37"
 "updated_at" => "2015-04-21 10:14:37"
]
 #relations: []
 #hidden: []
 #visible: []
 #appends: []
 #fillable: []
 #guarded: array:1 [
 0 => "*"
]
 #dates: []
 #casts: []
 #touches: []
 #observables: []
 #with: []
 #morphClass: null
 +exists: true
 }
 1 => Category {#156 ...}
 2 => Category {#157 ...}
]
 }

Wait, wait; what? Just changing a dd() call with a return? Well, you can see this
magic using two special methods: toArray and toJSON. You can also use them
manually, if you need, just like this:

 $books = \App\Book::all();

 $toArray = $books->toArray();
 $toJson = $books->toJson();

Cool, right?

Using Collections to Enhance Results

[122]

The dd() function I used before is a Laravel utility. It's a mix of the
native PHP var_dump() and die(). To be more precise, it shows the
value of a certain object or variable, and then stops the script.

Iterating and filtering
Sometimes you will need something more than passing a collection in to a view, or a
simple toArray() call. An Eloquent collection has many methods that you can use to
filter and iterate through its elements. Let's see something in action!

Iterating
First of all, let's begin with simple iteration. You can call the each() method to iterate
the elements of a certain collection:

 $books = \App\Book::all();

 $books->each(function($book)
 {
 echo $book->title;
 });

All you have to do is to pass as the first (and only) argument a closure with a single
parameter: the single item to be used. In this example, I just printed all the titles.

Filtering
If you want to filter your collection in a more complex way, you can use filter().
Let's take an example: I want to select every book that was printed after 1840.

 $books = \App\Book:all();

 $books->filter(function($book)
 {
 if($book->year > 1840)
 return true;
 else
 return false;
 });

Chapter 5

[123]

The syntax is really similar to the previous example. You have a closure as a
parameter, with a single argument passed; that is, the collection item.

However, this time you will have to check your conditions and return true or
false if you want to include (or not) this item in the result collection.

So, in this specific case, the current $book value was printed after 1840? Great, come
in. Not printed after 1840? Bye bye!

Sorting
Finally, you can sort data using a certain field. The methods you must use, this
time, are sortBy and sortByDesc. I think you are quite smart enough to understand
what they do, right?

However, here are some examples:

 // ordering books by title, ascending
 $books = $books->sortBy(function($book)
 {
 return $book->title;
 });

 // ordering books by creation date, descending;
 $books = $books->sortByDesc(function($book)
 {
 return $book->created_at;
 });

Also, you can use a shortcut if your closure logic is really simple, such as the
earlier examples:

 $books = $books->sortBy('title');
 $books = $books->sortByDesc('created_at');

Summary
Let's be clear; in my opinion, knowing every single method of a collection isn't really
indispensable. However, it can be really useful in some situations where you need a
certain method to do something very specific. How can I say it? The more things you
know, the better you are!

Now, let's move on! After this little break, it's time to go down in to the world
of events!

[125]

Everything under Control with
Events and Observers

Have you ever heard anything about the single responsibility principle? I hope so.
It is one of the SOLID principles in programming, and it basically says that a class
has one and only one responsibility. In other words, every class has to do one single
thing and not anything else.

Usually, when you build the first version of software, everything goes fine.
Then, it happens. Your boss calls: time to introduce a new feature, developer!
Especially if update means insert this little extra behavior here, your code base easily
becomes heavy and sloppy.

Terribly sloppy! Then, you fight against deadlines, tests, Q&A, and so on, literally
an odyssey. Not a very good practice, right?

Now, in the software development world, you can find many techniques and
methods to add new features to your software in an elegant way. You have
probably heard about events in programming.

In a few words, let's say it consists of logic such as this: when X does this, then Y
must do that.

Imagine a similar situation in your application: you just finished your application
and then you say, "Oh, I just forgot to send an e-mail to the newbie user!"

With Eloquent, you can handle this situation in two ways. The first way is using
the very interesting concept of model events. The second way is based on a more
advanced concept: model observers.

Everything under Control with Events and Observers

[126]

In this chapter, in the first place, you will learn everything about events in the
context of Eloquent models. Then, I will cover model events: what they are and
when you would use them.

Then, I will do the same for model observers. You will learn all the differences, and
the pros and cons. Obviously, for both of the concepts, I will use a practical example
to show how to use them in a real-world situation.

Are you ready, hero?

• When should I use events in my models?
• Model events
• An example of model events
• Model observers
• An example of model observers

When should I use events in my models?
What is an event? If you search the term on Google, you will get multiple results.

For example, it will be defined as something that happens or is regarded as happening; an
occurrence, especially one of some importance. It may also be defined as something that
occurs in a certain place during a particular interval of time.

I like these two definitions because they fit perfectly in this context. In fact, you can
see the particular interval of time as the model lifecycle, in a certain sense.

You can create a new instance, update an existing instance, or delete it.

Every operation you can do is related to two events.

Starting from the basics: I have just created that record, I deleted that record, or I am
updating that record, sounds natural, right?

Good. Now, Eloquent triggers some events when something happens in the model
lifecycle. To be more precise, they are as follows:

creating saved
created deleting
updating deleted
updated restoring
saving restored

Chapter 6

[127]

For every operation, you have two separate events. As you may imagine, they refer
to separate moments. Let's pick the create operation for our example.

You have the creating event, that you can read as "the create operation is going to
happen." Then, you have created that means "the create operation just happened".

As a scientist would say:

Operation Description
creating is about the t - 1 moment
created is related to the t + 1 moment

So, you have two events for the three basic operations: create, update, and delete.

Also, you can see two more operations: save and restore. However, don't worry,
they are not complex, in fact:

• Save: All you have to know is that the save operation is related both to
create and update. Let's assume that you want to add a behavior, whether or
not the application is creating a record or saving an existing record. Why
bother declaring the same thing twice? Just use the "save" generic operation
and you're done.

• Restore: The restore operation is used when you have the soft deletes
feature enabled for a certain model, and you undo a delete operation on it.

Ok, I know what you are thinking: what about going deeper into the concepts?

Model events
The first technique we are going to look at for events is called model events.
The basic concept is really simple:

• In the EventServiceProvider class, you can add a special event listener
and bind it to a certain closure

• In this closure, you will be able to specify your new behavior without
touching the model code

• This binding must be placed in the boot() method of the class

Here's a simple example of a binding between the created user event and a closure,
passed as a parameter of the called method.

Everything under Control with Events and Observers

[128]

The $user parameter of the closure contains the instance of the concerned user:

 public function boot(DispatcherContract $events)
 {
 parent::boot($events);

 User::created(function($user)
 {
 // doing something here, after User creation...
 });
 }

As you can imagine, every model has these methods, named after the events we saw
before. So, if you want to bind a certain operation to a saved event, for instance, you
must use the following:

 User::saved(function($user)
 {
 // doing something here, after User save operation
 (both create and update)...
 });

Another interesting feature is the possibility to stop the current operation with the
pre methods. In fact, if you are using any of the following:

• creating

• updating

• saving

• restoring

• deleting

You can decide to return the Boolean value false if you want to abort the operation.

Let's say you want to abort the create operation if the user e-mail ends with the
@deniedprovider.com string. You could do something like this:

 User::creating(function($user)
 {
 if(ends_with($user->email, '@deniedprovider.com'))
 {
 return false;
 }
 });

Obviously, you can't do the same on the created, updated, saved, restored, and
deleted events; the event just happened and you can't go back in time!

Chapter 6

[129]

An example of model events
We can now look at some examples of model events in action.

Let's start with the great classic. A new user joins us, and we want to greet them with
a welcome e-mail. Nothing is easier! Let's open EventServiceProvider and add this
code just after the parent::boot() call:

 User::created(function($user){

 Mail::send('emails.welcome', ['user' => $user],
 function($message) use ($user)
 {
 $message->to($user->email, $user->first_name . ' ' .
 $user->last_name)->subject('Welcome to My Awesome App,
 '.$user->first_name.'!');
 });

 });

Done! Wasn't it easy?

I am assuming that you have a welcome.blade.php view
in the emails folder under resources/views. I am also
assuming that you know the basics of e-mail sending in
Laravel. If you need some more info, go to http://laravel.
com/docs/5.0/mail#basic-usage.

Here is another example of model events in action:

Let's assume that we have a class (for the purpose of this example) that is delegated
to send an e-mail to every user who wants to know when a new book by a
certain author is added. The class is named NewBookNotifier, and the method
is called forAuthor($authorId), where the $authorId is the primary key of the
desired author.

We could do something like this:

 Book::created(function($book){

 $newBookNotifier = new NewBookNotifier();
 $newBookNotifier->forAuthor($book->author->id);

 });

http://laravel.com/docs/5.0/mail#basic-usage
http://laravel.com/docs/5.0/mail#basic-usage

Everything under Control with Events and Observers

[130]

Done! The main point is that this is very simple. As I mentioned earlier, the most
important part is that every model remains untouched. You can even add a very
complex behavior, but you will not touch anything in the model. This is a great
advantage because if you test that model and you don't touch it, you can be sure
that it will never break.

Now, I am going to talk about more complex things.

Events observers
Model events are cool, I agree. However, sometimes, you could need something
more advanced.

When you use Laravel, you are working mostly with object-oriented programming
and probably want to do the same with your model events. The answer to your
questions is model observers, which is an advanced version of model events.

To use them, all you have to do is to declare a new class like the following
(maybe in a dedicated folder called observers):

 class BookObserver {

 public function creating($book)
 {
 // I want to create the $book book, but first...
 }

 public function saving($book)
 {
 // I want to save the $book book, but first...
 }

 public function saved($book)
 {
 // I just saved the $book book, so....
 }

 }

Then register it with:

 Book::observe(new BookObserver);

In the boot() method of the EventServiceProvider class.

Chapter 6

[131]

There is nothing more to it, the concept is exactly the same. With observers you can
also use every single notion you learned before with model events. You can declare
every method you want, and to bind a specific event, just use the event identifier for
the method name. So, the creating event will be related to the creating() method
and so on.

Obviously, you can also abort an operation if you are using the pre methods,
such as creating or updating:

 class BookObserver {

 public function creating($book)
 {
 $somethingGoesWrong = true;

 if($somethingGoesWrong)
 {
 return false;
 }
 }

 }

Alright, now let's look at a couple of examples using model observers!

An example of model observers
First of all, here's how you can do the same thing you did in the first model events
example, using observers.

Create a new file named WelcomeUserObserver.php under app/Observers.
Now, type in the following:

 <?php

 namespace App\Observers;

 class WelcomeUserObserver {

 public function created($user){

 Mail::send('emails.welcome', ['user' => $user],
 function($message) use ($user)

Everything under Control with Events and Observers

[132]

 {
 $message->to($user->email, $user->first_name . ' ' .
 $user->last_name)->subject('Welcome to My Awesome App,
 '.$user->first_name.'!');
 });

 }

 }

Then, you can register the observer in the boot() method of
EventServiceProvider:

 /**
 * Register any other events for your application.
 *
 * @param \Illuminate\Contracts\Events\Dispatcher $events
 * @return void
 */
 public function boot(DispatcherContract $events)
 {
 parent::boot($events);

 User::observe(new WelcomeUserObserver);
 }

Ta-dah! You're done. Your observer is now attached to your model.

Let's imagine another situation now. After a meeting with developers, it comes
out that the librarian needs some small introduced in to the code base:

• A notification for every user when a new author is added to the system
• An e-mail sent every time an author is added or deleted

Finally, every time a book is deleted, the librarian must know how many authors
are stored in the database without a related book.

Good. Let's start. We will build three separate classes: remember the Single
Responsibility Principle, my friend.

We will have:

• CustomerNewAuthorObserver

• LibrarianAuthorObserver

• AuthorsWithoutBooksObservers

Chapter 6

[133]

You can name your classes as you prefer. I used this convention just
as an example to easily link the behavior to the chosen name.

Then, let's create the three separate classes:

 <?php

 // file: app/Observers/CustomerNewAuthorObserver

 namespace App\Observers;

 class CustomerNewAuthorObserver {

 public function created($author)
 {

 }

 }

 <?php

 // file: app/Observers/LibrarianAuthorObserver

 namespace App\Observers;

 class LibrarianAuthorObserver {

 public function created($author)
 {

 }

 public function deleted($author)
 {

 }

 }

 <?php

Everything under Control with Events and Observers

[134]

 // file: app/Observers/AuthorsWithoutBooksObservers

 namespace App\Observers;

 class AuthorsWithoutBooksObservers {

 public function deleted($author)
 {

 }

 }

Good. Now, it's time to add some logic.

First of all, let's add CustomerNewAuthorObserver:

 <?php

 // file: app/Observers/CustomerNewAuthorObserver

 namespace App\Observers;

 class CustomerNewAuthorObserver {

 public function created($author)
 {
 // getting all users...
 $users = \App\User::all();

 foreach($users as $user)
 {
 Mail::send('emails.created_author_customer',
 ['author' => $author], function($message) use ($user)
 {
 $message->to($user->email, $user->first_name . ' ' .
 $user->last_name)->subject('New Author Added!');
 });
 }
 }

 }

Chapter 6

[135]

A very rude approach, I know. As usual, it's just for teaching
purposes. Don't try this at home!

Then, our LibrarianAuthorObserver class is as follows:

 <?php

 // file: app/Observers/LibrarianAuthorObserver

 namespace App\Observers;

 class LibrarianAuthorObserver {

 public function created($author) {
 Mail::send('emails.created_author_librarian',
 ['author' => $author], function($message) use ($author)
 {
 $message->to('librarian@awesomelibrary.com',
 'The Librarian')->subject('New Author: ' .
 $author->first_name . ' ' . $author->last_name);
 });
 }

 public function deleted($author) {
 Mail::send('emails.deleted_author_librarian',
 ['author' => $author], function($message) use ($author)
 {
 $message->to('librarian@awesomelibrary.com',
 'The Librarian')->subject('New Author: ' .
 $author->first_name . ' ' . $author->last_name);
 });
 }

 }

Finally, we have the following:

 <?php

 // file: app/Observers/AuthorsWithoutBooksObservers

 namespace App\Observers;

Everything under Control with Events and Observers

[136]

 class AuthorsWithoutBooksObservers {

 public function deleted($author) {
 $authorsWithoutBooks = \App\Author::has('books',
 '=', 0)->get();

 if(count($authorsWithoutBooks) > 0){
 Mail::send('emails.author_without_books_librarian',
 ['authorsWithoutBooks' => $authorsWithoutBooks],
 function($message)
 {
 $message->to('librarian@awesomelibrary.com',
 'The Librarian')->subject('Authors without Books!
 A check is required!');
 });
 }
 }

 }

As mentioned earlier, I am assuming that you have all the needed
views and know how to deal with e-mails. If not, take a look at the
http://laravel.com/docs/5.0/mail#basic-usage page.

It doesn't end here. You can use observers and events for a vast number of cases and
scenarios. Just to take an example, imagine that you are writing a blog and you want
to regenerate your sitemap every time you create or edit an article. Observers are the
answer, or maybe you want to log something while you add new books—use event
observers, again!

http://laravel.com/docs/5.0/mail#basic-usage

Chapter 6

[137]

Summary
Great! You are now able to deal with events in every form, starting from the
very basic to the more advanced concepts of observers. You just added another
little piece to your Eloquent knowledge: the further you go, the more you will learn
about how to make sophisticated applications. Also, we're respecting some of the
SOLID principles!

Not bad, huh? However, don't use observers and events for everything.
Sometimes, they are not the best choice, and you have to use other tools. So, be
careful and analyze the individual problem you want to solve. A good technique
never applies well to everything.

Well, time to take another step forward. If you want, take some rest; the intermediate
part of our work is done. In the next two chapters, in fact, you will learn some
advanced things.

Are you ready? Great!

Turn the page and learn how to use Eloquent without Laravel!

[139]

Eloquent… without Laravel!
Our journey is close to the end, hero. You learned everything about Eloquent,
starting from the very basics and going through models, relationships, and other
topics. You probably started to like it and think about implementing it in your
next project.

In fact, creating an application without a single SQL query is tempting. Maybe
you also showed it to your boss and convinced him/her to use it in your next
production project.

I am so proud of you, hero!

However, there is a little problem. Yeah, the next project isn't so new. It already
exists, and, despite everything, it doesn't use Laravel! You start to shiver. This is so
sad because you passed the last week studying this new ORM, a really cool one,
and then moving forward.

Ok, stop complaining! There is always a solution! You are a developer! Also,
the solution is not so hard to find. If you want, you can use Eloquent without
Laravel. Yes, seriously!

Actually, Laravel is not a monolithic framework. It is made up of several, separate
parts, which are combined together to build something greater. However, nothing
prevents you from using only selected packages in another application.

A really cool idea!

So, what are we going to see in this chapter?

First of all, we will explore the structure of the database package and see what is
inside it. Then, you will learn how to install the illuminate/database package
separately for your project and how to configure it for the first use.

Eloquent… without Laravel!

[140]

Then, you will encounter some examples. First of all, we will look at the Eloquent
ORM. You will learn how to define models and use them.

Having done this, as a little extra, I will show you how to use the Query Builder
(remember that the "illuminate/database" package isn't just Eloquent). Maybe
you would also enjoy the Schema Builder class. I will cover it, don't worry!

À la charge!

We will cover the following:

• Exploring the directory structure
• Installing and configuring the database package
• Using the ORM
• Using the Query and Schema Builders
• Summary

Exploring the directory structure
As I mentioned before, the key step in order to use Eloquent in your application
without Laravel is to use the "illuminate/database" package.

So, before we install it, let's examine it a little.

You can see the package contents here: https://github.com/illuminate/
database.

So, this is what you will probably see:

Folder Description
Capsule The capsule manager is a fundamental component.

It instantiates the service container and loads some
dependencies.

Connectors The database package can communicate with various DB
systems. For instance, SQLite, MySQL, or PostgreSQL. Every
type of database has its own connector. This is the folder in
which you will find them.

Console The database package isn't just Eloquent with a bunch of
connectors. In this specific folder, you will find everything
related to console commands, such as artisan db:seed or
artisan migrate.

Eloquent Every single Eloquent class is placed here.

https://github.com/illuminate/database
https://github.com/illuminate/database

Chapter 7

[141]

Folder Description
Migrations Don't confuse this with the Console folder. Every class

related to migrations is stored here. When you type artisan
migrate in your terminal, you are calling a class that is
placed here.

Query The Query Builder is placed here.
Schema Everything related to the Schema Builder is placed here.

In the main folder, you will also find some other files. However, don't worry as you
don't need to know what they are.

If you open the composer.json file, take a look at the following "require" section:

"require": {
 "php": ">=5.4.0",
 "illuminate/container": "5.1.*",
 "illuminate/contracts": "5.1.*",
 "illuminate/support": "5.1.*",
 "nesbot/carbon": "~1.0"
},

As you can see, the database package has some prerequisites that you can't avoid.
However, the container is quite small, and it is the same for contracts (just some
interfaces) and "illuminate/support".

Eloquent uses Carbon (https://github.com/briannesbitt/
Carbon) to deal with dates in a smarter way. So, if you are seeing
this for the first time and you are confused, don't worry! Everything
is all right.

Now that you know what you can find in this package, let's see how to install it
and configure it for the first time.

Installing and configuring the database
package
Let's start with the setup. First of all, we will install the package using composer as
usual. After that, we will configure the capsule manager in order to get started.

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent… without Laravel!

[142]

Installing the package
Installing the "illuminate/database" package is really easy.

All you have to do is to add "illuminate/database" to the "require" section
of your composer.json file, like this:

"require": {

 "illuminate/database": "5.0.*",

},

Then type composer update in to your terminal, and wait for a few seconds.

Another way is to include it with the shortcut in your project folder, obviously
from the terminal:

composer require illuminate/database

No matter which method you chose, you just installed the package.

Configuring the package
Time to use the capsule manager! In your project, you will use something like
this to get started:

use Illuminate\Database\Capsule\Manager as Capsule;

$capsule = new Capsule;

$capsule->addConnection([
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'database',
 'username' => 'root',
 'password' => 'password',
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
]);

Chapter 7

[143]

// Set the event dispatcher used by Eloquent models... (optional)
use Illuminate\Events\Dispatcher;
use Illuminate\Container\Container;
$capsule->setEventDispatcher(new Dispatcher(new Container));

The config syntax I used is exactly the same you can find in the config/database.
php configuration file. The only difference is that this time you are explicitly using
an instance of the capsule manager in order to do everything.

In the second part of the code, I am setting up the event dispatcher. You must do
this if events are required from your project.

However, events are not included by default in this package, so you will have to
manually add the "illuminate/events" dependency to your composer.json file.

Now, the final step!

Add this code to your setup file:

// Make this Capsule instance available globally via static methods...
(optional)
$capsule->setAsGlobal();

// Setup the Eloquent ORM... (optional; unless you've used
setEventDispatcher())
$capsule->bootEloquent();

With setAsGlobal() called on the capsule manager, you can set it as a global
component in order to use it with static methods. You may like it or not; the
choice is yours. The final line starts up Eloquent, so you will need it.

However, this is also an optional instruction. In some situations you may need the
Query Builder only.

Then there is nothing else to do! Your application is now configured with the
database package (and Eloquent)!

Using the ORM
Using the Eloquent ORM in a non-Laravel application is not a big change. All you
have to do is to declare your model as you are used to doing. Then, you need to call
it and use it as you are used to.

Eloquent… without Laravel!

[144]

Here is a perfect example of what I am talking about:

use Illuminate\Database\Eloquent\Model;

class Book extends Model {

 ...

 // some attributes here…
 protected $table = 'my_books_table';

 // some scopes here...
 public function scopeNewest()
 {
 // query here...
 }

 ...

}

Exactly as you did with Laravel, the package you are using is the same. So, no
worries! If you want to use the model you just created, then use the following:

$books = Book::newest()->take(5)->get();

This also applies for relationships, observers, and so on. Everything is the same.

In order to use the database package and ORM exactly, you would
do the same thing you did in Laravel; remember to set up the project
structure in a way that follows the PSR-4 autoloading convention.

Using the Query and Schema Builder
It's not just about the ORM; with the database package, you can also use the Query
and the Schema Builders. Let's discover how!

Chapter 7

[145]

The Query Builder
The Query Builder is also very easy to use. The only difference, this time, is that you
are passing through the capsule manager object, like this:

$books = Capsule::table('books')
 ->where('title', '=', "Michael Strogoff")
 ->first();

However, the result is still the same.

Also, if you like the DB facade in Laravel, you can use the capsule manager class in
the same way:

$book = Capsule::select('select title, pages_count from books
where id = ?', array(12));

The Schema Builder
At the beginning of this book, I showed you the Schema Builder. You learned how to
use it with migrations, but now, without Laravel, you don't have migrations.

However, you can still use the Schema Builder. Like this:

Capsule::schema()->create('books', function($table)
{
 $table->increments(''id');
 $table->string(''title'', 30);
 $table->integer(''pages_count'');
 $table->decimal(''price'', 5, 2);.
 $table->text(''description'');
 $table->timestamps();
});

Previously, you used to call the create() method of the Schema facade. This time
is a little different: you will use the create() method, chained to the schema()
method of the Capsule class.

Obviously, you can use any Schema class method in this way. For instance, you
could call something like following:

Capsule::schema()->table('books', function($table)
{
 $table->string('title', 50)->change();
 $table->decimal('special_price', 5, 2);
});

Eloquent… without Laravel!

[146]

And you are good to go!

Remember that if you want to unlock some Schema Builder-specific
features you will need to install other dependencies.
For example, do you want to rename a column? You will need the
doctrine/dbal dependency package.

Summary
Yeah, this time, it was quite quick.

I decided to add this chapter because many people ask me how to use Eloquent
without Laravel. Mostly because they like the framework, but they can't migrate
an already started project in its entirety.

Also, I think that it's cool to know, in a certain sense, what you can find under
the hood.

It is always just about curiosity. Curiosity opens new paths, and you have a choice
to solve a problem in a new and more elegant way.

In these few pages, I just scratched the surface. I want to give you some advice:
explore the code. The best way to write good code is to read good code.

And now, to the final chapter!

[147]

It's Not Enough! Extending
Eloquent, Advanced

Concepts
Through this book, you learned that you can do many amazing things with Eloquent.
It is a great active record implementation; it's easy to use, really flexible, and it offers
many tools out of the box to improve your code base quality.

A developer usually must face two types of projects: Applications and applications,
as follows:

• For applications, I intend something that you can do, maybe in a quick way,
with some workarounds and some hacks, here and there. Also, I know that
you know what I am talking about. That site you made for a friend, a little
blog, and so on.

• Let's be clear and serious, you can't make every application with the same,
perfect care. Being honest, neither me nor probably any one does. Then, you
have to deal with Applications. Things can get really serious there, and you
must be able to build a maintainable, awesome application structure.

It's not just about something that works; in this case, I am thinking about
something that can scale easily, with a good quality code base. It's not just about
calling your models from controllers. That's not enough. You could stumble upon
many issues: testability, maintainability, and also in following some principles.

In this chapter, we will explore two different ways to extend Eloquent
more seriously.

It's Not Enough! Extending Eloquent, Advanced Concepts

[148]

In the very first part, you will learn how to extend the Eloquent Model class.
Actually, the Model does many things, but what if we need something more?
No problem: extending the existing Model class will be a bed of roses if standing
on the shoulders of a giant.

Have you ever heard about the Ardent Project? It's a package for Laravel 4 that
extends the Model class, adding some super powers: self-validating models and
auto-hydrating from the request input data.

You'll make something similar for the Laravel 5 Eloquent Model, and I will show you
how to do it step by step. Also, it is inspired by the work of Philip Brown in his blog
(http://culttt.com/2013/08/05/extending-eloquent-in-laravel-4/).

However, as mentioned earlier in this book, Laravel is mostly about freedom,
especially when it comes to freedom in organizing your projects. Now, a really
interesting trend is the repository pattern. It's a way to abstract your code in a better
way and separate responsibilities. For a project bigger than the bakery's blog, it's a
must-have in your knowledge base.

Also, the repository pattern is not something related to Laravel only. This means that
you will learn something new that you will be able to reuse in the future, with other
languages and products.

Alright, no more chitchat. It is time to get our hands dirty for the last time.

Come on, hero! We will cover the following topics:

• Extending the Model: Aweloquent !
• Diving into the repository pattern
• The summary

Extending the Model: Aweloquent!
The Eloquent Model can actually do tons of things in a very smart and easy way.
However, something can be improved in terms of code to write every time you
want to do a specific operation.

Usually, when creating a new model instance, you are probably using some data
that the user previously typed in to a form.

Adding a new author to our database can be the perfect example. All you have to do
is to insert the first and last names in to a form and then press save.

http://culttt.com/2013/08/05/extending-eloquent-in-laravel-4/

Chapter 8

[149]

Then, in the dedicated post route (or relative controller method), you will do
something similar to the following:

<?php

public function postAdd(Request $request)
{
 $author = new Author;

 $author->first_name = $request->input('first_name');
 $author->last_name = $request->input('last_name');

 $author->save();
}

That's quite fine. However, you will probably also have to validate the user input.

So, assuming that you are still in a controller, you could add a controller validator
call, just like this one:

<?php

public function postAdd(Request $request)
{
 $this->validate($request, [
 'first_name' => 'required',
 'last_name' => 'required'
], [
 'first_name.required' => 'You forgot the first name!',
 'last_name.required' => 'You forgot the last name!'
]);

 $author = new Author;

 $author->first_name = $request->input('first_name');
 $author->last_name = $request->input('last_name');

 $author->save();
}

Once again, saved the day!

It's Not Enough! Extending Eloquent, Advanced Concepts

[150]

Now, very often, developers debate the responsibilities of a single class in terms of
what that class has to do and what not. Everyone has a thought about the topic.

The Single Responsibility Principle, a part of the SOLID principles, is very
clear about that—put simply, the principle says that a class should do one and
only one thing.

On the other hand, however, you will often find very big classes. The Eloquent
Model is one of them. At the time of writing, the Illuminate\Database\Eloquent\
Model counts 3,399 lines of code. Not exactly something small!

Obviously, the Model doesn't perform a single operation; it fills its own attributes,
deals with relationships, and serializes its own attributes. Yes, it goes far beyond the
principle you just read.

So, what's the deal with it?

Well, even if it is very big, a Model like this allows you to perform many operations
using a single class.

A perfect example is how you can use a Model as a model, like this:

<?php

$user = new User;

// using magic methods...
$user->first_name = 'Francesco';
$user->last_name = 'Malatesta';

...

You can also use it as a factory (a class that is used to create instances in a more
elegant and better way) using the create() method:

<?php

$user = User::create([
 'first_name' => 'Francesco',
 'last_name' => 'Malatesta',
]);

Chapter 8

[151]

If this isn't enough, the Model also handles everything related to the persistence of
the instance:

<?php

$user = new User;

// some assignments...
$user->first_name = 'Francesco';
// ...

// and then save!
$user->save();

All using a single class—that's the main advantage.

You are probably asking yourself what he is trying to say with all this stuff.
The answer is really simple: there isn't always a single correct solution. Some
people hate the Eloquent Model, some people love it.

So, in this specific situation, I will add new features to the existing Model class
creating a new Eloquent Model… the Aweloquent!

Before we go any further, here's a clarification. I will repeat it again,
but I also want to say it now. In the following part of this chapter,
we will extend the Model class adding a feature that, in Laravel,
is handled by the Validator class. I am not teaching you this
because I want you to do this, but because I want to show you how
to extend the Model class.
For instance, you will probably find the smart password hashing
feature stupid, but it's just an example. Extending Models and
using repositories are two different techniques, which are totally
separated. I am just giving you the knowledge, then you can choose
what to do, and I am sure you will do the right thing, hero!

The Aweloquent Model
As I mentioned earlier, our powered-up Eloquent Model will be really similar to
the Ardent Laravel 4 package-improved Model. I will also borrow some ideas from
Philip Brown's Magniloquent project.

It's Not Enough! Extending Eloquent, Advanced Concepts

[152]

To be more precise, our improved Model will feature the following:

• Auto Hydrate
• Model self-validation
• Smart password hashing
• The autopurge of confirmation fields

Auto Hydrate
Instead of assigning attributes individually, or passing them in an array,
the Aweloquent Model will be able to read the current request and autopopulate
its attributes without any other code lines.

This means that you will be able to use the following:

<?php

$user = new User;
$user->save();

Instead of the more classic:

<?php

$user = new User;

$user->first_name = 'Francesco';
$user->last_name = 'Malatesta';
// other assignments here...

$user->save();

Model self-validation
You will be able to specify validation rules and messages as static properties of a
Model. Then, the Model will automatically perform the validation operation you
need, without using any external classes or controller validators. You will be able,
also, to assign a certain rule to a certain operation (the 'create' or the 'update'
operation, or both).

Chapter 8

[153]

So, in your Model, you will have something like this:

<?php namespace App;

use App\Aweloquent\AweloquentModel;

class Author extends AweloquentModel {

 protected $fillable = [
 'first_name', 'last_name', 'bio'
];

 protected static $rules = [
 'everytime' => [
 'first_name' => 'required'
],

 'create' => [
 'last_name' => 'required'
],

 'update' => [
 'bio' => 'required'
],
];

 protected static $messages = [
 'first_name.required' => 'You forgot the first name!',
 'last_name.required' => 'You forgot the last name!',
 'bio.required' => 'You forgot the biography!'
];

}

Smart password hashing
Another thing you have to do frequently is to hash a password. Usually, you take
the value from a password attribute. So, the Aweloquent Model automatically
performs the hash operation on a password field, if present.

It's Not Enough! Extending Eloquent, Advanced Concepts

[154]

The autopurge of confirmation fields
The Laravel validator has the confirmed rule, based on an x_confirmation attribute
(where x is the name of the field). You have probably used it used it for a password
confirmation field. The auto purge feature of the Aweloquent Model automatically
removes (after validation, of course) every _confirmation field.

However, it's not over yet! The Aweloquent Model will automatically exclude
the '_token' field, used by the Cross Site Request Forgery (CSRF) protection
middleware.

Alright, that's all! Now you can write some code.

Extending the class
The first thing you have to do is to create a new class, the AweloquentModel class
that extends the existing Eloquent Model one.

In my specific case, I made something really simple: I created a new folder called
Aweloquent in the app one and then created an AweloquentModel.php file inside.

Here's the code you have to put into this file:

<?php

namespace App\Aweloquent;

use Illuminate\Database\Eloquent\Model;

class AweloquentModel extends Model {}

Great! As a start, we have our new AweloquentModel class.

If you want, you can use it as a base for your future models. There are no changes
here, just a simple extension.

Let's add the first feature: Auto Hydrate.

The Auto Hydrate feature
Before we implement this first feature, let's think about what we want as a result.

Chapter 8

[155]

Actually, when you create a new model, you can quickly pass its attributes using
the constructor:

<?php

$user = new User([
 'first_name' => 'Francesco',
 'last_name' => 'Malatesta'
]);

These parameters are passed from the constructor to another method called fill():

/**
 * Create a new Eloquent model instance.
 *
 * @param array $attributes
 * @return void
 */

 public function __construct(array $attributes = array())
 {
 $this->bootIfNotBooted();

 $this->syncOriginal();

 $this->fill($attributes);
 }

As a logical consequence, if we want to implement this Auto Hydrate feature,
we will have to write a new constructor to deal with the auto hydrating there
and then to call the parent class. So, let's go back to our AweloquentModel class.
Here's the first implementation:

<?php

namespace App\Aweloquent;

use Illuminate\Database\Eloquent\Model;

class AweloquentModel extends Model {

 public function __construct(array $attributes = [])
 {

It's Not Enough! Extending Eloquent, Advanced Concepts

[156]

 $attributes = $this->autoHydrate($attributes);

 parent::__construct($attributes);
 }

 private function autoHydrate(array $attributes)
 {
 // getting the request instance using the service container
 $request = app('Illuminate\Http\Request');

 // getting the request form data, except the token
 $requestData = $request->except('_token');

 foreach($requestData as $name => $value)
 {
 // manually specified attribute has priority over auto-
 hydrated one.
 if(!isset($attributes[$name]))
 $attributes[$name] = $value;
 }

 return $attributes;
 }
}

The autoHydrate method creates the following:

• An instance of the current request to get the required data
• After that, and for each cycle, it adds to the attributes array every

element in the request data array (excluding the CSRF '_token')

Note that the explicit specified attribute (the one you can put in the Model
constructor) has the priority over the request data array. So, you are still free to deal
with the Model and decide what to define and what not, maybe to add some extra
data that you are not getting from the form.

If you try to create a new user by setting up a basic form, the Auto Hydrate feature is
already working.

Let's move forward!

Chapter 8

[157]

The Aweloquent Model self-validation
feature – the basic version
It is time to implement the self-validation feature of our Aweloquent Model.
The idea is quite simple: for every model, you will be able to declare (as properties)
rules and related messages. So, it should look something like this:

<?php namespace App;

use App\Aweloquent\AweloquentModel;

class Author extends AweloquentModel {

 protected $fillable = [
 'first_name', 'last_name', 'bio'
];

 protected static $rules = [
 'first_name' => 'required',
 'last_name' => 'required'
];

 protected static $messages = [
 'first_name.required' => 'You forgot the first name!',
 'last_name.required' => 'You forgot the last name!'
];

}

These rules and message will be used automatically by a validate() dedicated
method. What I want to achieve is something like this:

<?php

$user = new User;

if(!$user->validate())
{
 dd($user->errors);
}

It's Not Enough! Extending Eloquent, Advanced Concepts

[158]

So, let's open the AweloquentModel.php file and add some code:

<?php

namespace App\Aweloquent;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Support\Facades\Validator;

class AweloquentModel extends Model {

 protected static $rules = [];
 protected static $messages = [];

 public $errors;

 public function __construct(array $attributes = [])
 {
 $attributes = $this->autoHydrate($attributes);

 parent::__construct($attributes);
 }

 public function validate()
 {
 $validator = Validator::make($this->attributes,
 static::$rules, static::$messages);

 if($validator->fails())
 {
 $this->errors = $validator->messages();
 return false;
 }

 return true;
 }

 private function autoHydrate(array $attributes)
 {
 // auto hydrate method here...
 }

}

Chapter 8

[159]

Great! The Validator Facadec is used to instantiate a new validator. The static
$rules and $message attributes are used for the make() method.

Then, the $validator->fails() call determines if the given model is valid
or not. If not, the $errors property is populated using the validation errors
MessageBag object.

Obviously, this is a very basic validation system. However, we could
do something more. For instance, an implementation of an operation-based
validation would be great.

Go ahead and try it, if you want! It already works!

The Aweloquent Model self-validation
feature – the operation-based version
In order to implement the advanced version of the self-validation system, we have
to define the rule format for every model.

In this specific one, I have chosen something like this:

<?php namespace App;

use App\Aweloquent\AweloquentModel;

class Author extends AweloquentModel {

 protected $fillable = [
 'first_name', 'last_name', 'bio'
];

 protected static $rules = [
 'everytime' => [
 'first_name' => 'required'
],

 'create' => [
 'last_name' => 'required'
],

 'update' => [

It's Not Enough! Extending Eloquent, Advanced Concepts

[160]

 'bio' => 'required'
],
];

 protected static $messages = [
 'first_name.required' => 'You forgot the first name!',
 'last_name.required' => 'You forgot the last name!',
 'bio.required' => 'You forgot the biography!'
];

}

The $message property is left untouched. The only one that has to be modified is
$rules, as you may easily imagine.

In this new version of $rules, you can define rules for a single operation, 'create',
or both. If you want to use a rule in both of them, there is a dedicated 'everytime'
item to avoid the duplication of rules.

Of course, we have to edit our AweloquentModel once again. This time, we have to
define a method that has to work with the existing validate one and understand if we
are creating or updating it.

Then, merge the right rules in a single array and validate the model against
those rules.

Let's see what we can do! Consider the following code:

<?php

class AweloquentModel extends Model {

 ...

 public function __construct(array $attributes = [])
 {
 // constructor remains the same…
 }

 public function validate()
 {
 static::$rules = $this->mergeValidationRules();

Chapter 8

[161]

 $validator = Validator::make($this->attributes, static::$rules,
static::$messages);

 if($validator->fails())
 {
 $this->errors = $validator->messages();
 return false;
 }

 return true;
 }

 private function mergeValidationRules()
 {
 // if updating, use "update" rules, "create" otherwise.
 if($this->exists)
 $mergedRules =
 array_merge_recursive(static::$rules['everytime'],
 static::$rules
 ['update']);
 else
 $mergedRules =
 array_merge_recursive(static::$rules['everytime'],
 static::$rules

 ['create']);

 $finalRules = [];

 foreach($mergedRules as $field => $rules){
 if(is_array($rules))
 $finalRules[$field] = implode("|", $rules);
 else
 $finalRules[$field] = $rules;
 }

 return $finalRules;
 }

}

Great, we have it!

It's Not Enough! Extending Eloquent, Advanced Concepts

[162]

The validate() method doesn't change too much. The only big difference stands in
the newly line:

static::$rules = $this->mergeValidationRules();

Basically, we are saying, "Ok, now assign to the $rules property the result of this
mergeValidationRules() method."

Then, in the mergeValidationRules() method, the first instruction to be used is:

if($this->exists)

That is used to determine if the current operation is an insert or an update.
Starting from this value, we can get the right rules array, merging them with the
everytime rules.

Your new complex self-validating model is almost ready to be used.

Smart password hashing and the confirmation
fields autopurge method
The last features we have to implement are the smart password hashing and
confirmation fields auto purge methods.

The first is very easy and intuitive:

private function smartPasswordHashing()
{
 if($this->attributes['password'])
 $this->attributes['password'] = Hash::make($this-
 >attributes['password']);
}

If a 'password' field is present, hash it. Nothing more!

Even if, it's a little longer, the purgeConfirmationFields() isn't so hard to
understand:

private function purgeConfirmationFields()
{
 foreach($this->attributes as $name => $value)
 {
 if(Str::endsWith($name, '_confirmation'))
 unset($this->attributes[$name]);
 }
}

Chapter 8

[163]

This time, I used the Str string utility class in order to use the endsWith() method,
which is used to determine if a strings ends with a certain sequence of characters.
Every '_confirmation' field is removed.

Fixing the save() Model method
Now, the last thing that we need to fix is the save() method. Actually, the save()
method totally ignores the validation procedure, and this is no good. So, this is my
final version of the AweloquentModel class:

<?php

namespace App\Aweloquent;

use Illuminate\Database\Eloquent\Model;
use Illuminate\Support\Facades\Hash;
use Illuminate\Support\Facades\Validator;
use Illuminate\Support\Str;

class AweloquentModel extends Model {

 protected static $rules = [];
 protected static $messages = [];

 public $errors;

 public function __construct(array $attributes = [])
 {
 $attributes = $this->autoHydrate($attributes);

 parent::__construct($attributes);
 }

 public function save(array $options = [])
 {
 if($this->validate())
 {
 $this->smartPasswordHashing();
 $this->purgeConfirmationFields();

 return parent::save($options);
 }

It's Not Enough! Extending Eloquent, Advanced Concepts

[164]

 else
 return false;
 }

 public function validate()
 {
 static::$rules = $this->mergeValidationRules();

 $validator = Validator::make($this->attributes,
 static::$rules, static::$messages);

 if($validator->fails())
 {
 $this->errors = $validator->messages();
 return false;
 }

 return true;
 }

 private function autoHydrate(array $attributes)
 {
 // getting the request instance using the service container
 $request = app('Illuminate\Http\Request');

 // getting the request form data, except the token
 $requestData = $request->except('_token');

 foreach($requestData as $name => $value)
 {
 // manually specified attribute has priority over auto-
 hydrated one.
 if(!isset($attributes[$name]))
 $attributes[$name] = $value;
 }

 return $attributes;
 }

 private function mergeValidationRules()
 {

Chapter 8

[165]

 // if updating, use "update" rules, "create" otherwise.
 if($this->exists)
 $mergedRules =
 array_merge_recursive(static::$rules['everytime'],
 static::$rules

 ['update']);
 else
 $mergedRules =
 array_merge_recursive(static::$rules['everytime'],
 static::$rules

 ['create']);

 $finalRules = [];

 foreach($mergedRules as $field => $rules){
 if(is_array($rules))
 $finalRules[$field] = implode("|", $rules);
 else
 $finalRules[$field] = $rules;
 }

 return $finalRules;
 }

 private function smartPasswordHashing()
 {
 if($this->attributes['password'])
 $this->attributes['password'] = Hash::make($this-
 >attributes['password']);
 }

 private function purgeConfirmationFields()
 {
 foreach($this->attributes as $name => $value)
 {
 if(Str::endsWith($name, '_confirmation'))
 unset($this->attributes[$name]);
 }
 }
}

It's Not Enough! Extending Eloquent, Advanced Concepts

[166]

Let's analyze the save() method in detail:

public function save(array $options = [])
{
 if($this->validate())
 {
 $this->smartPasswordHashing();
 $this->purgeConfirmationFields();

 return parent::save($options);
 }
 else
 return false;
}

The first thing to do is to validate the entire input. After that, if everything is
fine, passwords are hashed and the confirmation fields are purged, as we don't
need them anymore.

Finally, the parent::save() method is called, and the operation is complete.

In order to create a perfect continuity with the parent class,
I declared the save() method with the same signature as its
parent (including the $options array parameter).

That's it! The AweloquentModel class is finished, and you can use it as you want in
your projects. You also learned how to go deep inside the Model class and extend it
in order to add new methods, behaviors, and features.

Diving into the repository pattern
If you know a couple of things about good development and best practices,
you have probably heard about software design patterns.

You can define them as useful solution templates for a certain kind of problem,
or to be more precise:

"In software engineering, a design pattern is a general reusable solution to
a commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly into
source or machine code. It is a description or template for how to solve a problem
that can be used in many different situations. Patterns are formalized best practices
that the programmer can use to solve common problems when designing an
application or system."

Chapter 8

[167]

This extract is from the software design patterns page
(http://en.wikipedia.org/wiki/Software_design_pattern)
on Wikipedia.

Now, let's focus on the second sentence.

A design pattern is not something that can be transformed directly into source code.

That's the most important part because it explains many things. It is not something
you learn specifically for Laravel or maybe for a certain language.

Absolutely, once you learned about design patterns, it is for life!

In the previous part of this chapter, you learned how to create an improved version
of the Eloquent Model. You reached the objective by adding something to the
existing model.

However, many people don't like that kind of approach. They strongly believe in
the Single Responsibility Principle, so every class must do one and only one thing.
Nothing more!

Let's be clear; I don't want to bore you by adding my useless opinion in this
long-time debate.

In the final part of this chapter, I will introduce a specific design pattern that can
be really useful for improving a Laravel application—the repository pattern.

Hello, repository pattern!
You know that I like to explain a concepts with an example as a start.
This is no exception.

Imagine that you are building an application for a warehouse. In this warehouse,
you can store whatever you want and you probably have a model like this:

<?php namespace Warehouse;

use Illuminate\Database\Eloquent\Model;

class Item extends Model {

 // properties and methods here...

}

http://en.wikipedia.org/wiki/Software_design_pattern

It's Not Enough! Extending Eloquent, Advanced Concepts

[168]

You are probably using this model in a controller, like this one:
<?php namespace Warehouse\Http\Controllers;

class ItemsController extends Controller {

 public function getIndex()
 {
 $items = \Warehouse\Item::orderBy('created_at', 'DESC')-
 >paginate(30);

 return view('item.list', compact('items'));
 }

}

There's nothing to say; it works, and you know it.

This is a cool solution for a simple project, the kind of project that you can call an
application. However, what happens if we don't have an Application, instead?

Imagine that the business you're helping grows and the management decides to
create a mobile application that must be used internally. You will probably need to
implement an API for the other developers.

If you don't know how to deal with something like this, you will soon start to write
duplicated code. In your Rest API, for sure, there will be an endpoint \items that
does the same thing you did in the controller method such as:

$items = \Warehouse\Item::orderBy('created_at', 'DESC')->paginate(30);

Repeating the same code many times isn't safe. You know it, right?

But no fear, hero! The solution is called a repository pattern.

The best definition of this concept is the one you can find on Martin Fowler's website
(http://martinfowler.com/eaaCatalog/repository.html):

"A Repository mediates between the domain and data mapping layers, acting
like an in-memory domain object collection. Client objects construct query
specifications declaratively and submit them to Repository for satisfaction.

Objects can be added to and removed from the Repository, as they can from a
simple collection of objects, and the mapping code encapsulated by the Repository
will carry out the appropriate operations behind the scenes."

http://martinfowler.com/eaaCatalog/repository.html

Chapter 8

[169]

So, imagine a repository as something in between that abstracts all the necessary.

Going back to the previous example, imagine that we have a repository with a
dedicated method getRecent($perPage, $pageNumber).

We will use the same method in the controller:

 <?php namespace Warehouse\Http\Controllers;

class ItemsController extends Controller {

 public function getIndex(ItemsRepository $itemsRepository)
 {
 // this is an example...
 $items = $itemsRepository->getRecent(30, 1);

 return view('item.list', compact('items'));
 }

}

In the Rest API, the following method is used:

<?php

Route::get('api/v1/items', function(ItemsRepository $repo){

 return $repo->getRecent(30, 1);

});

The same code is used twice and written once. However, there's more than this;
let's see how to implement repositories in a Laravel project.

Introducing repositories – a concrete
implementation
The best way to start with repositories is to implement a concrete implementation.
As I mentioned earlier, a repository stands between the controller and model. It is
something in the middle.

When you build a repository, you must do it thinking about what you will need from
the repository. Let's imagine something for our Author model.

It's Not Enough! Extending Eloquent, Advanced Concepts

[170]

I will probably need the following methods:

• getAll($perPage, $pageNumber): This returns a paginated list of every
author in my data source

• find($authorId): This returns a specific author with a certain primary key
• search($firstName, $lastName): This returns an array of results starting

from the first name to the last name

Enough of searching for and getting records! However, we will also need other
methods, which are dedicated to data persistence:

• create($authorData): This will save a new author in the data source
• save($authorData, $authorId): This will update an existing author in the

data source with a certain primary key

Let's start!

First of all, create a new directory in the app folder. Name it Repositories. Inside it,
create a new file called DbAuthorsRepository.php.

Here's the content:

<?php

namespace App\Repositories;

use App\Author;

class DbAuthorsRepository {

 private $model;

 public function __construct(Author $model)
 {
 $this->model = $model;
 }

 public function getAll($perPage, $pageNumber)
 {
 $authors = $this->model->skip(($pageNumber - 1) * $perPage)-
 >take($perPage)->get();
 return $authors->toArray();
 }

Chapter 8

[171]

 public function find($authorId)
 {
 return $this->model->find($authorId)->toArray();
 }

 public function search($firstName, $lastName)
 {
 return $this->model
 ->where('first_name', 'LIKE', '%'.$firstName.'%')
 ->where('last_name', 'LIKE', '%'.$lastName.'%')
 ->get()
 ->toArray();
 }

 public function create($authorData)
 {
 return $this->model->create($authorData);
 }

 public function update($authorData, $authorId)
 {
 return $this->model->find($authorId)->update($authorData);
 }

}

This is how you can use it in some test routes:

<?php

Route::get('authors',
function(\App\Repositories\DbAuthorsRepository $repository){

 return $repository->getAll(10, 1);

});

Route::get('create_author',
function(\App\Repositories\DbAuthorsRepository $repository){

 $repository->create([
 'first_name' => 'Francesco',
 'last_name' => 'Malatesta',

It's Not Enough! Extending Eloquent, Advanced Concepts

[172]

 'bio' => 'Lorem ipsum...'
]);

});

Route::get('update_author',
function(\App\Repositories\DbAuthorsRepository $repository){

 $repository->update([
 'first_name' => 'Frank',
 'last_name' => 'Smith',
 'bio' => 'Other ipsum...'
], 6);

});

Nothing more!

By creating a repository, you learned how to improve your software architecture and
the abstraction level of your solution. Also, instead of what you saw earlier in this
chapter with Aweloquent, this time you can feel a great separation of responsibilities.

However, this is not the end yet; the repository pattern hasn't yet shown all
of its power.

Coding on Abstractions
I already introduced you to the SOLID principles earlier in this chapter.
I mentioned the Single Responsibility Principle, the S of SOLID. Now that we
are close to the end, I will introduce the D.

The dependency inversion principle is one of my favorites because it really
highlights the importance of abstracting your code base the best you can.

Its definition is:

"A. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

B. Abstractions should not depend on details. Details should depend on
abstractions."

-Wikipedia (http://en.wikipedia.org/wiki/Dependency_inversion_
principle)

http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle

Chapter 8

[173]

In a few words, the concept is that you must code abstractions and should not
depend on concrete classes. Else, a better way to say it: you must depend on
abstractions and not on concrete classes.

In PHP, talking about abstraction refers to working with interfaces and contracts.

In a certain sense, Laravel itself widely uses this concept. The basic Laravel
package is Contracts, that is made up of several interfaces that specify what
 every component must do and how it does it.

However, it's not just about a framework big thing. You can apply this principle
in your everyday development. More specifically, you can apply the concept to
repositories.

I will show you how!

Repositories – a complete implementation
Before we dive in, let's introduce a little problem to our software.

Actually, our situation is the following: our controllers and routes use the
DbAuthorsRepository class to get data, like this:

Route::get('authors', function(\App\Repositories\DbAuthorsRepository
$repository){

 return $repository->getAll(10, 1);

});

Then, the DbAuthorsRepository class uses the Author model in order to get the
desired data from the physical storage:

<?php

namespace App\Repositories;

use App\Author;

class DbAuthorsRepository {

 private $model;

It's Not Enough! Extending Eloquent, Advanced Concepts

[174]

 public function __construct(Author $model)
 {
 $this->model = $model;
 }

 public function getAll($perPage, $pageNumber)
 {
 $authors = $this->model->skip(($pageNumber - 1) * $perPage)-
 >take($perPage)->get();
 return $authors->toArray();
 }

}

Now, let's imagine that our data sources change. For a certain reason (I know,
that is quite paradoxical), the management wants to switch to a file-based storage.

You have two ways to deal with this problem:

• You scream and are paralyzed by fear
• Decide to organize your code base in a better way, introducing interfaces

in to your repository workflow

Here's the plan:

Using the Laravel service container, you can decide to bind a certain interface to a
specific implementation.

So, if you create an interface for every repository, you will be able to write your code
once and then write every concrete repository you need and, finally, to switch from
one repository to another, you will have to change a single line of code.

However, let's make it step by step:

1. First of all, let's define a standard behavior for our author's repository
defining an AuthorRepository interface. Create a new AuthorRepository.
php file in app/Repositories/Contracts. I will use the Contracts folder
for interfaces.
Here're the contents of the fresh file:
<?php

namespace App\Repositories\Contracts;

Chapter 8

[175]

interface AuthorsRepository {

 public function getAll($perPage, $pageNumber);

 public function find($authorId);

 public function search($firstName, $lastName);

 public function create($authorData);

 public function update($authorData, $authorId);

}

Interfaces are pure abstraction. All we are saying here is, "When I build a
new author repository, I don't care about the underlying implementation. I
don't care if I am working with a NoSQL database or a flat file driver. All I
want is that every repository implements all these methods."
Working in this manner means that we can define a standard format for
every component (or repository, in this case) that we will use in the future.

2. Now we can update our DbAuthorsRepository class in order to implement
our interface. Consider the following line:
class DbAuthorsRepository {
It now becomes:
class DbAuthorsRepository implements AuthorsRepository {

Ok. Now, let's see the power of the entire mechanism in action.
3. First of all, open the app/Providers/AppServiceProvider.php file and add

this binding to the register() method:
public function register()
{
 $this->app->bind(
 'App\Repositories\Contracts\AuthorsRepository',
 'App\Repositories\DbAuthorsRepository'
);
}

Laravel now knows that every time you will request an instance
of AuthorsRepository, it will have to create an instance of the
DbAuthorsRepository using the service container.

It's Not Enough! Extending Eloquent, Advanced Concepts

[176]

4. To test our assumptions, open the routes file and add this:
<?php

Route::get('authors', function(\App\Repositories\Contracts\
AuthorsRepository $repository){

 return $repository->getAll(10, 1);

});

The result will be exactly what we are expecting. Also, using the method
injection technique, we don't have to explicitly call the service container.

5. In fact, an alternative to this syntax would be the following:

Route::get('authors', function(){

 $repository = app('App\Repositories\Contracts\
AuthorsRepository');

 return $repository->getAll(10, 1);

});

Adding the new repository
Finally, we are close to the end. Let's return to our main problem: we have to
implement a new file-based author's repository.

At this point, it is quite easy:

1. First, create a new file in app/Repositories, called
FileAuthorsRepository. It will be a new class, of course.

2. It will implement the AuthorsRepository interface, obviously.
Here are the class contents:
<?php

namespace App\Repositories;

use App\Repositories\Contracts\AuthorsRepository;

class FileAuthorsRepository implements AuthorsRepository {

Chapter 8

[177]

 public function getAll($perPage, $pageNumber)
 {
 dd('getting all records from flat file driver...');
 }

 public function find($authorId)
 {
 dd('searching by id: ' . $authorId);
 }

 public function search($firstName, $lastName)
 {
 dd('searching by first and last name...', $firstName,
 $lastName);
 }

 public function create($authorData)
 {
 dd('creating new author ', $authorData);
 }

 public function update($authorData, $authorId)
 {
 dd('updating author ' . $authorId, $authorData);
 }

}

As you can easily see, I have implemented all the required methods
from the interface. This means that our application will be able to use
the FileAuthorsRepository in the same way as the DbAuthorsRepository.

3. I filled method bodies with some dd instructions, just to show you how the
concept works. For our final step, go to the AppServiceProvider class and
update the previous binding to the following:
public function register()
{
 $this->app->bind(
 'App\Repositories\Contracts\AuthorsRepository',
 'App\Repositories\FileAuthorsRepository'
);
}

4. Now, browse to the /authors route. Yes, the output now is:

"getting all records from flat file driver..."

It's Not Enough! Extending Eloquent, Advanced Concepts

[178]

Yes, it worked!

Our route file will never know what repository it is using: the interface defines
all the methods you need.

This is fantastic because, for instance, if you want to add a NoSQL repository
to your application in the future, all you will have to do is to create a new
NoSQLAuthorsRepository class that implements the AuthorsRepository
interface. Then, in the AppServiceProvider, you will switch the binding
with the one you need.

Easy, cool, and also testable!

Maybe I am a little repetitive, but focus your attention on this specific point: with the
mentioned structure, you can abstract the way you work with your data from the
way you access to it. I know that reading the same thing again and again is boring,
but I need you to understand this concept.

It is probable that the first time you read about repositories you will think what
am I doing here? What the hell? I have done the same thing, so I totally understand
your doubts. However, when you work on a more complex project, you will totally
feel the difference.

That's the magic of repositories!

Summary
We are done. In this final chapter, you learned about empowering your application
in two different and separate ways: on one hand, adding features on an existing
entity. In this case, the Eloquent Model.

On the other one, you learned how to structure your application in a different way
using repositories in order to get a better code testability, maintainability, and a
separation of purposes instead of delegating everything to a single class.

Now you have all the tools you need to build great applications using Eloquent
and Laravel.

What are you waiting for? Go on and make me proud!

[179]

Index
A
accessors

about 70
naming convention 70

Adminer
about 14
URL 14

aggregates functions 57, 58
attributes casting 68, 69
Aweloquent Model

about 151
auto hydrate 152-156
autopurge feature 154, 162
class, extending 154
extending 148-150
features 152
save() method, fixing 163-166
self-validation 152
self-validation, basic version 157-159
self-validation, operation-based

version 159-162
smart password hashing 153, 162

B
Blueprint $table object 26

C
capsule manager 140
Cmder

URL 8
Collection class

reference 119

collections
basic operations 116-118
filtering 122
iterating 122
sorting 123
transforming 119-121

columns
created_at column 27
description text column 27
id column 27
pages_count integer column 27
price decimal column 27
title column 27
updated_at column 27

Composer
about 2
autoload file 3
commands 4, 5
composer.json file 3
installing 2

create($authorData) method 170
created event 127
create operation 127
creating event 127
Cross Site Request Forgery (CSRF) 154
CRUD (create, read, update, and delete)

operations
about 43, 46
operations, creating 46, 47
operations, deleting 52
operations, reading 48-51
operations, updating 52

[180]

D
database package

configuring 142, 143
installing 142

database versioning, with migrations
system

about 35
examples 38-40
migrations, creating 35-37
migrations, rolling back 37

distant relationships
accessing 103-106

E
eager loading

about 94
advanced eager loading 96
basic eager loading 95, 96
lazy eager loading 97, 98

EloquentJourney
about 16, 17
configuration system 17, 18
database connection, setting up 19-21

Eloquent Model 148
Eloquent ORM

about 140
using, in non-Laravel application 143, 144

Eloquent, without Laravel
database package, configuring 142, 143
database package, installing 142
directory structure 140, 141

events
about 126
in model 126, 127

events observers 130, 131

F
filtering 122
find($authorId) method 170

G
getAll($perPage, $pageNumber)

method 170

H
Homestead

about 6, 7
configuring 9-12
improved version 13
installing 8

Homestead installation
about 8
Composer and PHP tool way 8
Git way 9

I
iterating 122

L
Laravel 14
Laravel installation

about 15
Composer create-project command,

used 16
Laravel installer tool, used 15

M
magic where feature 56
many-to-many relationship 79, 87-89
mass assignment 59-61
model

creating 44, 45
model class

code, descending 72
conversion, to array or JSON 73, 74
imaginary attributes 75, 76
length 72
records, chunking for memory

optimization 77
route model binding 76, 77
toArray method 73
toJson method 73

model events
about 127, 128
example 129

[181]

model observers
about 130, 131
example 131-136

mutators 70, 71

O
one-to-many relationship 79, 85-87
one-to-one relationship 79-85
orWhere() method 54-56

P
polymorphic relationships

about 106
many-to-many polymorphic

relationship 111-113
simple polymorphic relationship 106-110

Q
Query Builder

using 145
querying-related models

about 90-92
pivot table, accessing 93
relationship, querying 93, 94

query scopes 66-68

R
related models

associate() method 99, 100
inserting 98
many-to-many relationship 100-102
save() method 99
sync() method 102
updating 98

relationships
inverses 90
many-to-many 79
one-to-many 79
one-to-one 79

repository pattern
about 148, 166-169
coding on abstractions 172, 173

complete implementation 173-176
concrete implementation 169-172
new repository, adding 176-178
reference 168

S
save($authorData, $authorId) method 170
save operation 127
Schema Builder

using 145
Schema Builder class

$table object methods 29, 30
about 24
columns' methods reference 28, 29
columns, working with 26-28
create() method 24
foreign keys 32-34
indexes 32-34
tables and columns, updating 31
tables, working with 24, 25

search($firstName, $lastName) method 170
Single Responsibility Principle 150
smart password hashing feature 151
soft deleting feature 64-66
software design patterns page

URL 167
sorting 123

T
timestamps 62

U
utility methods 58

V
Vagrant

URL 8
VirtualBox

URL 8

W
where() method 53

Thank you for buying
Learning Laravel's Eloquent

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Laravel Design Patterns and
Best Practices
ISBN: 978-1-78328-798-7 Paperback: 106 pages

Enhance the quality of your web applications by
efficiently implementing design patterns in Laravel

1. Create fully functional web applications
using design patterns in Laravel.

2. Explore various techniques to adapt different
software patterns that suit your needs.

3. Get to know the best practices to utilize
when making a web application.

4. Concise and practical guide to master the
MVC approach of Laravel and its benefits.

Getting Started with Laravel 4
ISBN: 978-1-78328-703-1 Paperback: 128 pages

Discover Laravel - one of the most expenssive, robust,
and flexible PHP web application frameworks around

1. Provides a concise introduction to all the
concepts needed to get started with Laravel.

2. Walks through the different steps involved
in creating a complete Laravel application.

3. Gives an overview of Laravel's advanced
features that can be used when applications
grow in complexity.

4. Learn how to build structured, more
maintainable, and more secure applications
with less code by using Laravel.

Please check www.PacktPub.com for information on our titles

Learning Laravel 4
Application Development
ISBN: 978-1-78328-057-5 Paperback: 256 pages

Develop real-world applications in Laravel 4 using
its refined and expenssive syntax

1. Build real-world web applications using
the Laravel 4 framework.

2. Learn how to configure, optimize and deploy
Laravel 4 applications.

3. Packed with illustrations along with lots of tips
and tricks to help you learn more about one of
the most exciting PHP frameworks around.

Laravel Application
Development Blueprints
ISBN: 978-1-78328-211-1 Paperback: 260 pages

Learn to develop 10 fantastic applications with
the new and improved Laravel 4

1. Learn how to integrate third-party scripts
and libraries into your application.

2. With different techniques, learn how
to adapt different methods to your needs.

3. Expand your knowledge of Laravel 4
so you can tailor the sample solutions
to your requirements.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Our First Project
	Your Swiss Army Knife – Composer
	Installing Composer
	The composer.json and autoload files
	The most used commands

	Your safe place – Homestead
	Installing Homestead
	The Composer and PHP tool way
	The Git way

	Configuring Homestead

	The new hideout: Homestead improved
	A bonus tool – Adminer
	Your best friend: Laravel
	Installing Laravel
	Using the Laravel installer tool
	Using the Composer create-project command

	The first project – EloquentJourney
	The configuration system
	Setting up the database connection

	Summary

	Chapter 2: Building the Database with the Schema Builder Class
	The Schema Builder class
	Working with tables
	Working with columns
	Columns' methods reference
	Other $table object methods
	Updating tables and columns
	Indexes and foreign keys

	Database versioning with the migrations system
	Creating migrations
	Rolling back migrations
	More examples, more migrations

	Summary

	Chapter 3: The Most Important Element – the Model!
	Creating a Model
	Create, read, update, and delete operations basics
	Create operations
	Reading operations
	Updating operations
	Deleting operations

	Where, aggregates and other utilities
	where and orWhere
	Magic wheres

	Aggregates
	Utility methods

	Mass assignment... for the masses
	Timestamps and soft deletes
	Timestamps
	Soft deleting

	Query scopes
	Attributes casting, accessors, and mutators
	Attributes casting
	Accessors and mutators

	Descending in the code
	A big file
	Quick conversion to array or JSON
	Imaginary attributes
	Route model binding
	Records chunking for memory optimization

	Summary

	Chapter 4: Exploring the World of Relationships
	The trinity – one to one, one to many, many to many
	One to one
	What exactly happened?

	One to many
	Many to many
	A question of inverses

	Querying-related models
	Accessing a pivot table
	Querying a relationship

	Eager loading (and the N + 1 problem)
	Basic eager loading
	Advanced eager loading
	Lazy eager loading

	Inserting and updating related models
	The save() and associate() methods
	What about many to many?
	The sync() method

	Accessing distant relationships
	More power – polymorphic relationships
	A simple polymorphic relationship
	A many-to-many polymorphic relationship

	Summary

	Chapter 5: Using Collections to Enhance Results
	Basic collection operations
	Transforming collections
	Iterating and filtering
	Iterating
	Filtering

	Sorting
	Summary

	Chapter 6: Everything under Control with Events and Observers
	When should I use events in my models?
	Model events
	An example of model events
	Events observers
	An example of model observers
	Summary

	Chapter 7: Eloquent… without Laravel!
	Exploring the directory structure
	Installing and configuring the database package
	Installing the package
	Configuring the package

	Using the ORM
	Using the Query and Schema Builder
	The Query Builder
	The Schema Builder

	Summary

	Chapter 8: It's Not Enough! Extending Eloquent, Advanced Concepts
	Extending the Model: Aweloquent!
	The Aweloquent Model
	Auto Hydrate
	Model self-validation
	Smart password hashing
	The autopurge of confirmation fields

	Extending the class
	The Auto Hydrate feature
	The Aweloquent Model self-validation
feature – The basic version
	The Aweloquent Model self-validation
feature – The operation-based version
	Smart password hashing and the confirmation fields autopurge method
	Fixing the save() Model method

	Diving into the repository pattern
	Hello, repository pattern!
	Introducing repositories – a concrete implementation
	Coding on Abstractions
	Repositories – a complete implementation
	Adding the new repository

	Summary

	Index

